zoukankan      html  css  js  c++  java
  • luogu P3391 【模板】文艺平衡树(Splay)

    嘟嘟嘟


    突然觉得splay挺有意思的……


    这道题只有一个任务:区间翻转。
    首先应该知道的是,splay和线段树一样,都可以打标记,然后走到每一个节点之前先下传。
    那怎么打标记呢?还应该有“区间”的思想。
    对于区间([L, R]),想办法把这个区间所在的子树提取出来,然后打个标记即可。
    那怎么提取呢?其实也不难。只要找出(L)的前驱(a = L - 1)(R)的后继(b = R + 1),然后把(a)旋到根,再把(b)旋到根的右子节点,这样(b)的左子树就是当前区间了。
    但是找前驱和后继只能像bst那么找,因为这棵splay的key值是下标,而下标并没有存起来,而是通过子树大小体现的。所以上述找前驱和后继操作相当于查询第(k)大。因为事先加了(-INF)(INF)防止越界,所以找前驱就是查询第(L)大的,后继就是第(R + 2)大的。

    int getRank(int k)
    {
      int now = root;
      while(1)
        {
          pushdown(now);
          if(t[t[now].ch[0]].siz >= k) now = t[now].ch[0];
          else if(t[t[now].ch[0]].siz + 1 == k) return now;
          else k -= t[t[now].ch[0]].siz + 1, now = t[now].ch[1];
        }
    }
    void update(int L, int R)
    {
      int a = getRank(L), b = getRank(R + 2); //pre(L), nxt(R)
      splay(a, 0); splay(b, a); //现在b的左子树就是当前区间
      pushdown(root); pushdown(t[root].ch[1]);
      int now = t[t[root].ch[1]].ch[0];
      t[now].lzy ^= 1;
    }
    

    还有一件事就是建树,虽然可以像[这道题](https://www.cnblogs.com/mrclr/p/10060317.html)一样每一次插入一个数,不过有更可爱的方法。 仿照线段树的建树方法,但有一个显著的区别是线段树的每一个节点表示一个区间,而splay就表示一个点,所以递归的时候把当前区间的$a[mid]$作为线段树该节点的权值,然后到$[L, mid - 1]$和$[mid + 1, R]$中建立左右子树。 ```c++ int build(int L, int R, int f) { if(L > R) return 0; int mid = (L + R) >> 1, now = ++ncnt; t[now].val = a[mid]; t[now].fa = f; t[now].ch[0] = build(L, mid - 1, now); t[now].ch[1] = build(mid + 1, R, now); pushup(now); return now; } ```
    最后一件事就是输出。利用splay自身的性质,中序遍历就是答案。
    完整代码 ```c++ #include #include #include #include #include #include #include #include #include #include using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define rg register typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 1e5 + 5; inline ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } inline void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); }

    int n, m, a[maxn];
    struct Tree
    {
    int ch[2], fa;
    int val, siz, lzy;
    }t[maxn];
    int root, ncnt = 0;
    void _PrintTr(int now)
    {
    if(!now) return;
    printf("nd:%d val:%d ls:%d rs:%d ", now, t[now].val, t[t[now].ch[0]].val, t[t[now].ch[1]].val);
    _PrintTr(t[now].ch[0]); _PrintTr(t[now].ch[1]);
    }
    void pushdown(int now)
    {
    if(now && t[now].lzy)
    {
    t[t[now].ch[0]].lzy ^= 1; t[t[now].ch[1]].lzy ^= 1;
    swap(t[now].ch[0], t[now].ch[1]);
    t[now].lzy = 0;
    }
    }
    void pushup(int now)
    {
    t[now].siz = t[t[now].ch[0]].siz + t[t[now].ch[1]].siz + 1;
    }
    void rotate(int x)
    {
    int y = t[x].fa, z = t[y].fa, k = (t[y].ch[1] == x);
    t[z].ch[t[z].ch[1] == y] = x; t[x].fa = z;
    t[y].ch[k] = t[x].ch[k ^ 1]; t[t[y].ch[k]].fa = y;
    t[x].ch[k ^ 1] = y; t[y].fa = x;
    pushup(y); pushup(x);
    }
    void splay(int x, int s) //旋转的时候不用pushdown.(因为是自底向上的)
    {
    while(t[x].fa != s)
    {
    int y = t[x].fa, z = t[y].fa;
    if(z != s)
    {
    if((t[z].ch[0] == y) ^ (t[y].ch[0] == x)) rotate(x);
    else rotate(y);
    }
    rotate(x);
    }
    if(s == 0) root = x;
    }
    int build(int L, int R, int f)
    {
    if(L > R) return 0;
    int mid = (L + R) >> 1, now = ++ncnt;
    t[now].val = a[mid]; t[now].fa = f;
    t[now].ch[0] = build(L, mid - 1, now);
    t[now].ch[1] = build(mid + 1, R, now);
    pushup(now);
    return now;
    }
    int getRank(int k)
    {
    int now = root;
    while(1)
    {
    pushdown(now);
    if(t[t[now].ch[0]].siz >= k) now = t[now].ch[0];
    else if(t[t[now].ch[0]].siz + 1 == k) return now;
    else k -= t[t[now].ch[0]].siz + 1, now = t[now].ch[1];
    }
    }
    void update(int L, int R)
    {
    int a = getRank(L), b = getRank(R + 2); //pre(L), nxt(R)
    splay(a, 0); splay(b, a); //现在b的左子树就是当前区间
    pushdown(root); pushdown(t[root].ch[1]);
    int now = t[t[root].ch[1]].ch[0];
    t[now].lzy ^= 1;
    }
    void print(int now)
    {
    pushdown(now);
    if(t[now].ch[0]) print(t[now].ch[0]);
    if(t[now].val != INF && t[now].val != -INF) write(t[now].val), space;
    if(t[now].ch[1]) print(t[now].ch[1]);
    }

    int main()
    {
    n = read(); m = read();
    a[1] = -INF; a[n + 2] = INF;
    for(int i = 1; i <= n; ++i) a[i + 1] = i;
    root = build(1, n + 2, 0);
    //_PrintTr(root);
    for(int i = 1, L, R; i <= m; ++i) L = read(), R = read(), update(L, R);
    print(root), enter;
    return 0;
    }

  • 相关阅读:
    可视化数据挖掘开源软件的比较分析
    大数据平台比较-CDH,HDP
    数据挖掘的一般过程
    httpclient介绍与请求方式详解
    30分钟带你了解阻塞队列所有内容,再也不怕面试官刁难你了!(上)
    Lock
    HashMap 源码解读
    类加载各阶段详解
    Java基础复习(八、注解)
    Java基础复习(六、反射)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10060582.html
Copyright © 2011-2022 走看看