zoukankan      html  css  js  c++  java
  • [CQOI2018]九连环

    嘟嘟嘟


    对于这种找规律的题,我向来是不会的。


    通过大佬们的各种打表找规律、神奇dp等方法,我们得到了答案就是(lfloor frac{2 ^ {n + 1}}{3} floor)
    高精是显然的,但是还得用fft,毕竟这是省选题。


    刚开始我一运行就RE,都不让你输入,后来才发现是数组开到1e6太大了(这怎么就大了!?)
    其次别忘了高精里面的数都是倒着存的,所以做除法的时候得倒着来,最后再把数组倒过来。
    然后高精fft借鉴了一下兔哥的代码,把原来的代码简化了许多。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const db PI = acos(-1);
    const int maxn = 1e5 + 5;
    inline ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), last = ' ';
      	while(!isdigit(ch)) last = ch, ch = getchar();
      	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(last == '-') ans = -ans;
    	return ans;
    }
    inline void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
      	if(x >= 10) write(x / 10);
      	putchar(x % 10 + '0');
    }
    
    int rev[maxn];
    struct Comp
    {
      	db x, y;
      	In Comp operator + (const Comp& oth)const
      	{
    		return (Comp){x + oth.x, y + oth.y};
      	}
      	In Comp operator - (const Comp& oth)const
      	{
        	return (Comp){x - oth.x, y - oth.y};
      	}
      	In Comp operator * (const Comp& oth)const
      	{
        	return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};
      	}
      	friend In void swap(Comp& a, Comp& b)
      	{
        	swap(a.x, b.x); swap(a.y, b.y);
      	}
    };
    
    In void fft(Comp* a, int len, int flg)
    {
    	for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
    	for(int i = 1; i < len; i <<= 1)
    	{
    		Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg};
    		for(int j = 0; j < len; j += (i << 1))
    		{
    			Comp o = (Comp){1, 0};
    			for(int k = 0; k < i; ++k, o = o * omg)
    			{
    				Comp tp1 = a[k + j], tp2 = a[k + j + i] * o;
    				a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2;
    			}
    		}
    	}
    }
    
    struct Big
    {
      	int a[maxn], len;
      	In void init() {Mem(a, 0); len = 0;}
      	In Big operator * (const Big& oth)const
      	{
      		static Comp A[maxn], B[maxn];
        	int Len = 1, lim = 0;
        	while(Len < len + oth.len - 1) Len <<= 1, ++lim;
        	for(int i = 0; i < Len; ++i)
        	{
        		A[i] = (Comp){i < len ? a[i] : 0, 0};		//这个很重要 
        		B[i] = (Comp){i < oth.len ? oth.a[i] : 0, 0};
        	}
        	for(int i = 0; i < Len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
    	    fft(A, Len, 1); fft(B, Len, 1);
    	    for(int i = 0; i < Len; ++i) A[i] = A[i] * B[i];
    	    fft(A, Len, -1);
    	    static Big ret; ret.init(); ret.len = len + oth.len - 1;
    	    for(int i = 0; i < ret.len; ++i) ret.a[i] = (int)(A[i].x / Len + 0.5);
    	    for(int i = 0; i < ret.len; ++i) ret.a[i + 1] += ret.a[i] / 10, ret.a[i] %= 10;
    		if(ret.a[ret.len]) ++ret.len;	//因为最多只会进一位,所以就不用while啦 
        	return ret;
    	}
    	In Big operator / (int x)
    	{
    		static Big ret; ret.init();
    		for(int i = len - 1, tp = 0; i >= 0; --i)
    		{
    			tp = tp * 10 + a[i];
    			if(ret.len) ret.a[ret.len++] = tp / x;
    			else if(tp >= x) ret.a[ret.len++] = tp / x;
    			tp %= x;
    		}	
    		reverse(ret.a, ret.a + ret.len);
    		return ret;
    	}
    	In void out()
    	{
    		for(int i = len - 1; i >= 0; --i) write(a[i]);
    	}
    }A, ret;
    
    int main()
    {
    	int T = read();
    	while(T--)
        {
        	int n = read() + 1;
          	A.init(); ret.init();
    		A.len = ret.len = 1;
    	    A.a[0] = 2; ret.a[0] = 1;
    	    for(; n; n >>= 1, A = A * A)
    			if(n & 1) ret = ret * A;
    		ret = ret / 3;
          	ret.out(), enter;
        }
      	return 0;
    }
    
  • 相关阅读:
    二级域名绑定子目录
    Promise.all的使用
    react的状态管理
    chrome调试
    组件之间通讯
    promise-async-await
    深入理解AMQP协议转载
    java中堆栈(stack)和堆(heap)
    面试题(Spring)
    IO复用,AIO,BIO,NIO,同步,异步,阻塞和非阻塞 区别参考
  • 原文地址:https://www.cnblogs.com/mrclr/p/10376699.html
Copyright © 2011-2022 走看看