zoukankan      html  css  js  c++  java
  • [CQOI2014]和谐矩阵

    嘟嘟嘟


    遇到这种(看似)构造的题,我好像一般都做不出来……


    然而这题正解是高斯消元解异或方程组……
    首先我们容易列出式子a[i][j] ^ a[i - 1][j] ^ a[i + 1][j] ^ a[i][j - 1] ^ a[i][j + 1] = 0。于是我们列出所有像这样的(n * m)个式子,然后(O((nm) ^ 3))高斯消元加bitset优化就过了。


    讲真我还不会高斯消元解异或方程组,就现学了一下。其实就是把运算改成了异或,然后bitset可以把一个一个消改成一行和一行消。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    #include<ctime>
    #include<bitset>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 1605;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, m;
    const int dx[] = {-1, 0, 1, 0, 0}, dy[] = {0, 1, 0, -1, 0};
    bitset<maxn> f[maxn];
    
    In int num(int x, int y)
    {
      return (x - 1) * m + y;
    }
    
    int ans[maxn];
    In void Gauss(int n)
    {
      for(int i = 1; i <= n; ++i)
        {
          int pos = i;
          while(pos <= n && !f[pos][i]) ++pos;
          if(pos == n + 1) continue;
          swap(f[i], f[pos]);
          for(int j = i + 1; j <= n; ++j) if(f[j][i]) f[j] ^= f[i];
        }
      for(int i = n; i; --i)
        if(!f[i][i]) ans[i] = 1;
        else for(int j = i + 1; j <= n; ++j) if(f[i][j]) ans[i] ^= ans[j];
    }
    
    int main()
    {
      n = read(), m = read();
      for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
          for(int k = 0; k <= 4; ++k)
    	{
    	  int x = i + dx[k], y = j + dy[k];
    	  if(x < 1 || x > n || y < 1 || y > m) continue;
    	  f[num(i, j)][num(x, y)] = 1;
    	}
      //  for(int i = 1; i <= n; ++i) cout << f[i].to_string() << endl;
      Gauss(n * m);
      for(int i = 1; i <= n; ++i)
        {
          for(int j = 1; j <= m; ++j) write(ans[num(i, j)]), space;
          enter;
        }
      return 0;
    }
    
  • 相关阅读:
    [蓝桥杯] 第39级台阶
    [蓝桥杯] 马虎的算式
    POJ 1142 Smith Numbers(史密斯数)
    HDU 1181 变形课
    HDU 1728 逃离迷宫
    HDU 2188 悼念512汶川大地震遇难同胞――选拔志愿者 巴什博奕
    HDU 2177 取(2堆)石子游戏 (威佐夫博弈)
    HDU 1847 Good Luck in CET-4 Everybody! 博弈
    HDU 1525 Euclid's Game
    HDU 1517 A Multiplication Game 博弈
  • 原文地址:https://www.cnblogs.com/mrclr/p/10461668.html
Copyright © 2011-2022 走看看