今天看了一下矩阵树定理,然后学了一下(O(n ^ 3))的方法求行列式。
哦对了,所有的证明我都没看……
这位大佬讲的好呀:
[学习笔记]高斯消元、行列式、Matrix-Tree 矩阵树定理
关于模数不是质数的情况,我看了半天才懂:其实就是加速了两行的辗转相减,把一次次减换成了取模。然后别忘了每一次交换两行的时候行列式要取相反数。
[HEOI2015]小Z的房间
这题就是板儿题了。把是'.'的格子记录下来,然后构造基尔霍夫矩阵就行了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 105;
const ll mod = 1e9;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, cnt = 0, id[maxn][maxn];
char s[maxn][maxn];
ll f[maxn][maxn];
In void add(int x, int y)
{
++f[x][x], ++f[y][y], --f[x][y], --f[y][x];
}
In ll Gauss(int n)
{
ll ans = 1;
for(int i = 1; i <= n; ++i)
{
for(int j = i + 1; j <= n; ++j)
while(f[j][i])
{
ll d = f[i][i] / f[j][i];
for(int k = i; k <= n; ++k) f[i][k] = (f[i][k] - d * f[j][k] % mod + mod) % mod;
swap(f[i], f[j]), ans = -ans;
}
ans = (ans * f[i][i] % mod + mod) % mod;
}
return ans;
}
int main()
{
n = read(), m = read();
for(int i = 1; i <= n; ++i) scanf("%s", s[i] + 1);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) if(s[i][j] == '.') id[i][j] = ++cnt;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
if(id[i][j])
{
if(id[i][j + 1]) add(id[i][j], id[i][j + 1]);
if(id[i + 1][j]) add(id[i][j], id[i + 1][j]);
}
write(Gauss(cnt - 1)), enter;
return 0;
}
[[CQOI2018]社交网络](https://www.luogu.org/problemnew/show/P4455) 这题让求的是以节点1为根的生成树个数,于是我们把矩阵的第一行第一列消去,剩下的求一个行列式就是答案了。 注意连边是反的。 ```c++ #include
int n, m;
ll f[maxn][maxn];
In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
In ll Gauss()
{
ll ans = 1;
for(int i = 2; i <= n; ++i)
{
int pos = i;
while(!f[pos][i]) ++pos;
if(pos ^ i) swap(f[i], f[pos]), ans = mod - ans;
if(!f[i][i]) return 0; //如果每一行第i个数都输0,才返回0
ans = ans * f[i][i] % mod;
ll inv = quickpow(f[i][i], mod - 2);
for(int j = i + 1; j <= n; ++j)
{
ll tp = f[j][i] * inv % mod;
for(int k = i; k <= n; ++k) f[j][k] = (f[j][k] - tp * f[i][k] % mod + mod) % mod;
}
}
return ans;
}
int main()
{
n = read(), m = read();
for(int i = 1; i <= m; ++i)
{
int y = read(), x = read(); //x -> y
++f[y][y], --f[y][x];
}
write(Gauss()), enter;
return 0;
}