传送
题面:一个(n)行(m)列的正整数矩阵((1leqslant n, m leqslant 20)),设(A_i)为前(i)行所有元素之和,(B_i)为前(i)列所有元素之和。已知(n,m)和数组(A)和(B),找一个满足条件的矩阵。矩阵中的元素必须是(1sim 20)之间的正整数。输入保证有解。
这道题说白了就是分配问题嘛,我们该如何分配每个元素的权值,使其满足行列的条件。
那这就是一个二分图,左部点是行(1sim n),右部点是列(n+1sim n + m + 1).
从源点向每一行连一条容量为该行元素之和的边,从每一列向汇点连一条容量为该列元素之和的边,而对于任意行列之间,连一条容量为(20)的边,因为每个数最大只有(20).
然后跑最大流,看行列之间的边的流量是多少即可。
但道题还有个条件,即有流量下界(1)的限制,但因为每条边的下界都是(1),因此在跑网络流之前减掉即可。
陈老师的代码,直接记录了行列之间的边的编号,输出答案就非常方便,值得学习。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
#define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 25;
const int maxe = 1e4 + 5;
In ll read()
{
ll ans = 0;
char ch = getchar(), las = ' ';
while(!isdigit(ch)) las = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(las == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, s, t, id[maxn][maxn];
struct Edge
{
int nxt, to, cap, flow;
}e[maxe];
int head[maxn << 1], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w, 0};
head[x] = ecnt;
e[++ecnt] = (Edge){head[y], x, 0, 0};
head[y] = ecnt;
}
int dis[maxn << 1];
In bool bfs()
{
Mem(dis, 0), dis[s] = 1;
queue<int> q; q.push(s);
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = head[now], v; ~i; i = e[i].nxt)
if(e[i].cap > e[i].flow && !dis[v = e[i].to])
dis[v] = dis[now] + 1, q.push(v);
}
return dis[t];
}
int cur[maxn << 1];
In int dfs(int now, int res)
{
if(now == t || res == 0) return res;
int flow = 0, f;
for(int& i = cur[now], v; ~i; i = e[i].nxt)
{
if(dis[v = e[i].to] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
{
e[i].flow += f, e[i ^ 1].flow -= f;
flow += f, res -= f;
if(res == 0) break;
}
}
return flow;
}
In int maxFlow()
{
int flow = 0;
while(bfs())
{
memcpy(cur, head, sizeof(head));
flow += dfs(s, INF);
}
return flow;
}
int main()
{
int T = read(), ID = 0;
while(T--)
{
Mem(head, -1), ecnt = -1;
n = read(), m = read();
s = 0, t = n + m + 1;
for(int i = 1, las = 0; i <= n; ++i)
{
int x = read();
addEdge(s, i, x - las - m);
las = x;
}
for(int i = 1, las = 0; i <= m; ++i)
{
int x = read();
addEdge(i + n, t, x - las - n);
las = x;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
addEdge(i, j + n, 19);
id[i][j] = ecnt - 1;
}
maxFlow();
printf("Matrix %d
", ++ID);
for(int i = 1; i <= n; ++i, enter)
for(int j = 1; j <= m; ++j) write(e[id[i][j]].flow + 1), space;
enter;
}
return 0;
}