zoukankan      html  css  js  c++  java
  • UVa11082 Matrix Decompressing 矩阵解压

    传送


    题面:一个(n)(m)列的正整数矩阵((1leqslant n, m leqslant 20)),设(A_i)为前(i)行所有元素之和,(B_i)为前(i)列所有元素之和。已知(n,m)和数组(A)(B),找一个满足条件的矩阵。矩阵中的元素必须是(1sim 20)之间的正整数。输入保证有解。


    这道题说白了就是分配问题嘛,我们该如何分配每个元素的权值,使其满足行列的条件。

    那这就是一个二分图,左部点是行(1sim n),右部点是列(n+1sim n + m + 1).

    从源点向每一行连一条容量为该行元素之和的边,从每一列向汇点连一条容量为该列元素之和的边,而对于任意行列之间,连一条容量为(20)的边,因为每个数最大只有(20).

    然后跑最大流,看行列之间的边的流量是多少即可。

    但道题还有个条件,即有流量下界(1)的限制,但因为每条边的下界都是(1),因此在跑网络流之前减掉即可。

    陈老师的代码,直接记录了行列之间的边的编号,输出答案就非常方便,值得学习。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 25;
    const int maxe = 1e4 + 5;
    In ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), las = ' ';
    	while(!isdigit(ch)) las = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(las == '-') ans = -ans;
    	return ans;
    }
    In void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    
    int n, m, s, t, id[maxn][maxn];
    struct Edge
    {
    	int nxt, to, cap, flow;
    }e[maxe];
    int head[maxn << 1], ecnt = -1;
    In void addEdge(int x, int y, int w)
    {
    	e[++ecnt] = (Edge){head[x], y, w, 0};
    	head[x] = ecnt;
    	e[++ecnt] = (Edge){head[y], x, 0, 0};
    	head[y] = ecnt;
    }
    
    int dis[maxn << 1];
    In bool bfs()
    {
    	Mem(dis, 0), dis[s] = 1;
    	queue<int> q; q.push(s);
    	while(!q.empty())
    	{
    		int now = q.front(); q.pop();
    		for(int i = head[now], v; ~i; i = e[i].nxt)
    			if(e[i].cap > e[i].flow && !dis[v = e[i].to])
    				dis[v] = dis[now] + 1, q.push(v);
    	}
    	return dis[t];
    }
    int cur[maxn << 1];
    In int dfs(int now, int res)
    {
    	if(now == t || res == 0) return res;
    	int flow = 0, f;
    	for(int& i = cur[now], v; ~i; i = e[i].nxt)
    	{
    		if(dis[v = e[i].to] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
    		{
    			e[i].flow += f, e[i ^ 1].flow -= f;
    			flow += f, res -= f;
    			if(res == 0) break;
    		}
    	}
    	return flow;
    }
    In int maxFlow()
    {
    	int flow = 0;
    	while(bfs())
    	{
    		memcpy(cur, head, sizeof(head));
    		flow += dfs(s, INF);
    	}
    	return flow;
    }
    
    int main()
    {
    	int T = read(), ID = 0;
    	while(T--)
    	{
    		Mem(head, -1), ecnt = -1;
    		n = read(), m = read();
    		s = 0, t = n + m + 1;
    		for(int i = 1, las = 0; i <= n; ++i)
    		{
    			int x = read();
    			addEdge(s, i, x - las - m);
    			las = x;
    		}
    		for(int i = 1, las = 0; i <= m; ++i)
    		{
    			int x = read();
    			addEdge(i + n, t, x - las - n);
    			las = x;
    		}
    		for(int i = 1; i <= n; ++i)
    			for(int j = 1; j <= m; ++j)
    			{
    				addEdge(i, j + n, 19);
    				id[i][j] = ecnt - 1;
    			}
    		maxFlow();
    		printf("Matrix %d
    ", ++ID);
    		for(int i = 1; i <= n; ++i, enter)
    			for(int j = 1; j <= m; ++j) write(e[id[i][j]].flow + 1), space;
    		enter;
    	}
    	return 0;
    }
    
  • 相关阅读:
    Service Location Protocol SLP
    [http 1.1] M-POST
    安装 wbemcli
    [http 1.1] M-POST w3
    [CODEVS 1288]埃及分数
    [NOIp 2013]货车运输
    [测试题]gentree
    [USACO 07NOV]Cow Relays
    [USACO 13DEC]Vacation Planning(gold)
    [CODEVS 2495]水叮当的舞步
  • 原文地址:https://www.cnblogs.com/mrclr/p/14901282.html
Copyright © 2011-2022 走看看