zoukankan      html  css  js  c++  java
  • CF1553E Permutation Shift

    cf传送门
    题解链接


    这题比赛的时候完全没有头绪,题解也是看了半天才看懂。


    首先想,给定两个(0 sim n - 1)的排列(a,b),将(a)中的元素两两交换得到(b),怎么求最少的交换次数?
    对于(a)中的每一个数(a_i),都可以找到在(b)中的“目标位置”(j)(即(a_i=b_j)),从(i)(j)连边,会发现构成了一张有若干个环的图。那么最优的交换策略一定是环与环之间互不干扰,且环内的交换次数是 环大小-1,将这些加起来,就得到了最少的交换次数是(n-x)(x)是环的个数)。
    所以我们能用(O(n))的时间求出两个序列最少需要多少次交换才能相互转换。


    但是这道题,(O(n^2))显然不行,接下来就是这道题的独特之处了。
    假设排列(a,b)中已经有(x)个满足(a_i=b_i),那么至少要交换(frac{n-x}{2})次。而题中有最多(m)次的这个限制,那么只有(frac{n-x}{2}leqslant m),即(x geqslant n - 2m)的排列才可能满足题目的条件,因此我们如果只对这些排列进行检查,时间复杂度可能会减少。
    那究竟是否可行呢?
    答案是可行的。因为每一个排列对应的(x)是很好求出来的:因为原序列是从(1 sim n),那么对于新序列的一个(p_i),只有让原序列移动((i-p_i)mod n)次后才能相等,所以我们可以直接扫一遍就求出所有的(x_k)了,而且必有(sumlimits_{k=0}^{n - 1} x_k=n).
    结合上面的(x geqslant n - 2m)(m leqslant frac{n}{3}),有(x geqslant n - frac{2}{3}n = frac1{3}n).因此最多只有(3)个符合条件的(x_k)!
    那么我们只要找到这(3)(x)对应的(k),再(O(n))判断就行了!


    代码中之所以开了很多vector,是因为(n,m)可能很小,(数据组数)t$可能很大,memset数组会超时。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    #include<assert.h>
    #include<ctime>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 3e5 + 5;
    In ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), las = ' ';
    	while(!isdigit(ch)) las = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(las == '-') ans = -ans;
    	return ans;
    }
    In void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    In void MYFILE()
    {
    #ifndef mrclr
    	freopen(".in", "r", stdin);
    	freopen(".out", "w", stdout);
    #endif
    }
    
    int n, m, a[maxn];
    
    In int calc_circle(vector<int> b)
    {
    	int ret = 0;
    	vector<int> vis(n);
    	for(int i = 0; i < n; ++i) if(!vis[i])
    	{
    		int x = i;
    		while(!vis[x]) vis[x] = 1, x = b[x];
    		++ret;
    	}
    	return ret;
    }
    In bool judge(int K)
    {
    	vector<int> b;
    	for(int i = K; i < n; ++i) b.push_back(a[i]);
    	for(int i = 0; i < K; ++i) b.push_back(a[i]);
    	return n - calc_circle(b) <= m;
    }
    
    In void solve()
    {
    	vector<int> num(n), ans;
    	for(int i = 0; i < n; ++i) num[i - a[i] + (i < a[i]) * n]++;
    	for(int i = 0; i < n; ++i)
    		if(num[i] + 2 * m >= n && judge(i)) ans.push_back(i);
    	write(ans.size());
    	for(auto x : ans) space, write(x); enter;
    }
    
    int main()
    {
    //	MYFILE();
    	int T = read();
    	while(T--)
    	{
    		n = read(), m = read();
    		for(int i = 0; i < n; ++i) a[i] = read() - 1;
    		solve();
    	}
    	return 0;
    }
    
  • 相关阅读:
    【leetcode】590. N-ary Tree Postorder Traversal
    【leetcode】589. N-ary Tree Preorder Traversal
    【leetcode】402. Remove K Digits
    【leetcode】42. Trapping Rain Water
    【leetcode】32. Longest Valid Parentheses
    【leetcode】870. Advantage Shuffle
    【leetcode】22. Generate Parentheses
    BEC translation exercise 2
    New Concept English three (50)
    BEC translation exercise 1
  • 原文地址:https://www.cnblogs.com/mrclr/p/15053228.html
Copyright © 2011-2022 走看看