树形dp。
首先一个很常规的想法就是如果u到v有一条边,那么建立cost(u, v) = 0, cost(v, u) = 1的两条边.
可以两遍dfs。
先任选一个点作为根节点,第一遍从下往上dfs,维护节点u到他的所有子节点的距离,很容易得出dis[u] = ∑dis[v] + cost(u, v) (v为u的儿子节点)。
第二遍从上往下dfs,维护节点u到所有节点的距离,考虑u和他的一个儿子节点v,两者到所有节点的区别只有cost(u, v)这条边是不一样的,如果cost(u, v) = 1,那么dis2[v] = dis2[u] - 1,否则dis2[v] = dis2[u] + 1.

1 #include<cstdio> 2 #include<iostream> 3 #include<cmath> 4 #include<algorithm> 5 #include<cstring> 6 #include<cstdlib> 7 #include<cctype> 8 #include<vector> 9 #include<stack> 10 #include<queue> 11 using namespace std; 12 #define enter puts("") 13 #define space putchar(' ') 14 #define Mem(a, x) memset(a, x, sizeof(a)) 15 #define rg register 16 typedef long long ll; 17 typedef double db; 18 const int INF = 0x3f3f3f3f; 19 const db eps = 1e-8; 20 const int maxn = 2e5 + 5; 21 inline ll read() 22 { 23 ll ans = 0; 24 char ch = getchar(), last = ' '; 25 while(!isdigit(ch)) {last = ch; ch = getchar();} 26 while(isdigit(ch)) {ans = ans * 10 + ch - '0'; ch = getchar();} 27 if(last == '-') ans = -ans; 28 return ans; 29 } 30 inline void write(ll x) 31 { 32 if(x < 0) x = -x, putchar('-'); 33 if(x >= 10) write(x / 10); 34 putchar(x % 10 + '0'); 35 } 36 37 int n; 38 vector<int> v[maxn]; 39 vector<bool> c[maxn]; 40 int dis[maxn]; 41 bool vis[maxn]; 42 43 void init() 44 { 45 for(int i = 1; i <= n; ++i) v[i].clear(), c[i].clear(); 46 Mem(dis, 0); 47 } 48 49 void dfs1(int now) 50 { 51 vis[now] = 1; 52 for(int i = 0; i < (int)v[now].size(); ++i) 53 { 54 if(!vis[v[now][i]]) 55 { 56 dis[now] += c[now][i]; 57 dfs1(v[now][i]); 58 dis[now] += dis[v[now][i]]; 59 } 60 } 61 } 62 void dfs2(int now) 63 { 64 vis[now] = 1; 65 for(int i = 0; i < (int)v[now].size(); ++i) 66 { 67 if(!vis[v[now][i]]) 68 { 69 dis[v[now][i]] = dis[now] + (c[now][i] ? -1 : 1); 70 dfs2(v[now][i]); 71 } 72 } 73 } 74 75 int main() 76 { 77 while(scanf("%d", &n) != EOF) 78 { 79 init(); 80 for(int i = 1; i < n; ++i) 81 { 82 int x = read(), y = read(); 83 v[x].push_back(y); c[x].push_back(0); 84 v[y].push_back(x); c[y].push_back(1); 85 } 86 Mem(vis, 0); dfs1(1); 87 Mem(vis, 0); dfs2(1); 88 int Min = INF; 89 for(int i = 1; i <= n; ++i) Min = min(Min, dis[i]); 90 write(Min); enter; 91 for(int i = 1; i <= n; ++i) if(dis[i] == Min) write(i), space; 92 enter; 93 } 94 return 0; 95 }