zoukankan      html  css  js  c++  java
  • UVA10140 Prime Distance

    嘟嘟嘟

     

    L, R很大,所以哪怕用线性筛也会T飞的,但是看到R - L不太大,因此我们可以先筛出[1, √R]所有素数,然后用这些数筛出[L, R]的所有合数。具体做法是对于每一个pi,筛去所有的 i * pi (⌈L / i⌉ <= i <= ⌊R / i⌋)。然后遍历[L, R]的所有素数更新答案即可。

    要注意的是1不是质数,然后如果素数表拿int存的话,prime[i] * prime[i]要强制转换成long long ,否则爆了后会无限循环然后RE。

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<algorithm>
     5 #include<cstring>
     6 #include<cstdlib>
     7 #include<cctype>
     8 #include<vector>
     9 #include<stack>
    10 #include<queue>
    11 using namespace std;
    12 #define enter puts("") 
    13 #define space putchar(' ')
    14 #define Mem(a, x) memset(a, x, sizeof(a))
    15 #define rg register
    16 typedef long long ll;
    17 typedef double db;
    18 const int INF = 0x3f3f3f3f;
    19 const db eps = 1e-8;
    20 const int maxp = 5e5 + 5;
    21 const int maxn = 1e6 + 5;
    22 inline ll read()
    23 {
    24     ll ans = 0;
    25     char ch = getchar(), last = ' ';
    26     while(!isdigit(ch)) {last = ch; ch = getchar();}
    27     while(isdigit(ch)) {ans = ans * 10 + ch - '0'; ch = getchar();}
    28     if(last == '-') ans = -ans;
    29     return ans;
    30 }
    31 inline void write(ll x)
    32 {
    33     if(x < 0) x = -x, putchar('-');
    34     if(x >= 10) write(x / 10);
    35     putchar(x % 10 + '0');
    36 }
    37 
    38 ll L, R;
    39 int prime[maxp], v[maxp];
    40 bool vis[maxn];
    41 
    42 void init()
    43 {
    44     for(int i = 2; i < maxp; ++i)
    45     {
    46         if(!v[i]) v[i] = i, prime[++prime[0]] = i;
    47         for(int j = 1; j <= prime[0] && prime[j] * i <= maxp; ++j)
    48         {
    49             if(prime[j] > v[i]) break;
    50             v[i * prime[j]] = prime[j];        
    51         }
    52     }
    53 }
    54 
    55 int main()
    56 {
    57     init();
    58     while(scanf("%lld%lld", &L, &R) != EOF)
    59     {
    60         Mem(vis, 0); if(L == 1) vis[0] = 1;
    61         for(int i = 1; (ll)prime[i] * (ll)prime[i] <= R && i <= prime[0]; ++i)
    62         {
    63             for(int j = (L + prime[i] - 1) / prime[i]; j <= R / prime[i]; ++j)
    64                 if(j > 1) vis[j * prime[i] - L] = 1;
    65         }
    66         ll Min1 = 0, Min2 = 0, Max1 = 0, Max2 = 0, now1 = 0, now2 = 0;
    67         for(int i = 0; i <= R - L; ++i)
    68         {
    69             if(!vis[i]) 
    70             {
    71                 now1 = now2; now2 = i + L;
    72                 if(now1)
    73                 {
    74                     if(!Min1 || now2 - now1 < Min2 - Min1) Min1 = now1, Min2 = now2;
    75                     if(!Max1 || now2 - now1 > Max2 - Max1) Max1 = now1, Max2 = now2;
    76                 }
    77             }
    78         }
    79         if(!Min1) printf("There are no adjacent primes.
    ");
    80         else printf("%lld,%lld are closest, %lld,%lld are most distant.
    ", Min1, Min2, Max1, Max2);
    81     }
    82     return 0;
    83 }
    View Code
  • 相关阅读:
    4.文本规范化处理
    2.自动文本分类
    3.文本分类的蓝图
    1.什么是文本分类
    2.文本规范化
    Python 处理和理解文本
    1.文本切分
    验证码识别
    随机函数
    Java编程思想笔记(多态)
  • 原文地址:https://www.cnblogs.com/mrclr/p/9758263.html
Copyright © 2011-2022 走看看