zoukankan      html  css  js  c++  java
  • pip 安装依赖 设置加速目录 Conda 设置加速安装

    python 设置阿里云pip源,加速pip更新速度

    Linux系统:

    mkdir ~/.pip
    cat > ~/.pip/pip.conf << EOF
    [global]
    trusted-host=mirrors.aliyun.com
    index-url=https://mirrors.aliyun.com/pypi/simple/
    EOF
    

    Windows系统:

    首先在window的文件夹窗口输入 : %APPDATA%
    然后创建pip文件夹
    最后创建pip.ini文件,写入如下内容:

    [global]
    index-url = https://mirrors.aliyun.com/pypi/simple/
    [install]
    trusted-host=mirrors.aliyun.com
    pip 安装依赖 设置加速
    
    http://www.zyglz.com/index.php/archives/18.html
    阿里云源:https://mirrors.aliyun.com/pypi/simple
    腾讯云源:https://mirrors.cloud.tencent.com/pypi/simple
    豆瓣源:https://pypi.doubanio.com/simple
    清华源:https://pypi.tuna.tsinghua.edu.cn/simple
    华为源:https://repo.huaweicloud.com/simple
    
    
    2.生成requirements.txt文件:
    3.安装requirements.txt依赖:
    python -m pip install --upgrade pip
    pip freeze > requirements.txt
    pip install -r requirements.txt
    
    pip 指定包的目录
    方法一
    指定安装numpy包到固定文件夹下,比如这里“文件夹”是安装路径
    
    pip install -t 文件夹 numpy
    pip3 install tensorflow==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    
    #自定义依赖安装包的路径
    USER_SITE = null
    #自定义的启用Python脚本的路径
    USER_BASE = null
    我这里修改为
    
    USER_SITE = "D:\program\Anaconda\envs\py36\Lib\site-packages"
    USER_BASE = "D:\program\Anaconda\envs\py36\Scripts"
    验证
    python -m site 
    
    
    yum install python3-dev python3-pip python3-venv
    
     yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel
    
    conda 安装
    
    
    
    # 获得最新的miniconda安装包;
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    # 安装到自己的HOME目录software/miniconda3中,这个目录在安装前不能存在;
    sh Miniconda3-latest-Linux-x86_64.sh -b -p ${HOME}/software/miniconda3
    # 安装成功后删除安装包
    rm -f Miniconda3-latest-Linux-x86_64.sh
    # 将环境变量写入~/.bashrc文件中;
    echo "export PATH=${HOME}/software/miniconda3/bin:\$PATH" >> ~/.bashrc
    # 退出重新登录或者执行以下命令
    source ~/.bashrc
    
    #加速
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    
    conda config --set show_channel_urls yes
    
    #GPU 版
    conda create -n tf-gpu-2.3.0 tensorflow-gpu==2.3.0 -y
    
    
    #CPU 版
    conda create -n tf-2.3.0 tensorflow==2.3.0 -y
    source activate tf-2.3.0
    python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
    
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    ##保证sess.run()能够正常运行 2.0版本的
    import tensorflow as tf
    tf.__version__
    tf.compat.v1.disable_eager_execution() 
    hello = tf.constant('hello,tensorflow')
    sess= tf.compat.v1.Session()
    print(sess.run(hello))
    
    
    
    #导入包
    from hyperlpr import *
    #导入OpenCV库
    import cv2
    #读入图片
    image = cv2.imread("D:\\tensorflow\\lpr-master\\test-imgs\\1.jpg")
    cv2.imshow("Image", image)
    #识别结果
    print(HyperLPR_plate_recognition(image))
    
    
    
    source deactivate
    
    win
    
    pip install tensorflow-1.6.0-cp36-cp36m-win_amd64.whl
    
    pip install tensorflow-2.3.0-cp38-cp38m-win_amd64.whl

     常用的依赖项

    pip install -r requirements.txt
    absl-py==0.13.0
    aniso8601==7.0.0
    aplus==0.11.0
    argon2-cffi==20.1.0
    astropy==4.2.1
    astunparse==1.6.3
    async-generator==1.10
    attrs==21.2.0
    Automat==20.2.0
    autopep8==1.5.7
    backcall==0.2.0
    beautifulsoup4==4.9.3
    blake3==0.1.8
    bleach==3.3.0
    bqplot==0.12.29
    bs4==0.0.1
    cachetools==4.2.2
    certifi==2021.5.30
    cffi==1.14.5
    chardet==4.0.0
    click==8.0.1
    cloudpickle==1.6.0
    colorama==0.4.4
    comtypes==1.1.10
    constantly==15.1.0
    cryptography==3.4.7
    cssselect==1.1.0
    cycler==0.10.0
    d3dshot==0.1.5
    dask==2021.6.1
    decorator==5.0.9
    defusedxml==0.7.1
    entrypoints==0.3
    et-xmlfile==1.1.0
    flake8==3.9.2
    Flask==2.0.1
    frozendict==2.0.2
    fsspec==2021.6.0
    future==0.18.2
    gast==0.3.3
    google-auth==1.31.0
    google-auth-oauthlib==0.4.4
    google-pasta==0.2.0
    graphene==2.1.8
    graphene-tornado==2.6.1
    graphql-core==2.3.2
    graphql-relay==2.0.1
    greenlet==1.1.0
    grpcio==1.38.0
    h2==3.2.0
    h5py==2.10.0
    hpack==3.0.0
    hyperframe==5.2.0
    hyperlink==21.0.0
    idna==2.10
    incremental==21.3.0
    ipydatawidgets==4.2.0
    ipykernel==5.5.5
    ipyleaflet==0.14.0
    ipympl==0.7.0
    ipython==7.24.1
    ipython-genutils==0.2.0
    ipyvolume==0.5.2
    ipyvue==1.5.0
    ipyvuetify==1.7.0
    ipywebrtc==0.6.0
    ipywidgets==7.6.3
    itemadapter==0.2.0
    itemloaders==1.0.4
    itsdangerous==2.0.1
    jedi==0.18.0
    Jinja2==3.0.1
    jmespath==0.10.0
    joblib==1.0.1
    jsonschema==3.2.0
    jupyter-client==6.1.12
    jupyter-core==4.7.1
    jupyterlab-pygments==0.1.2
    jupyterlab-widgets==1.0.0
    Keras==2.3.0
    Keras-Applications==1.0.8
    Keras-Preprocessing==1.1.2
    kiwisolver==1.3.1
    llvmlite==0.36.0
    locket==0.2.1
    lxml==4.6.3
    Markdown==3.3.4
    MarkupSafe==2.0.1
    matplotlib==3.4.2
    matplotlib-inline==0.1.2
    mccabe==0.6.1
    mistune==0.8.4
    nbclient==0.5.3
    nbconvert==6.0.7
    nbformat==5.1.3
    nest-asyncio==1.5.1
    notebook==6.4.0
    numba==0.53.1
    numexpr==2.7.3
    numpy==1.18.5
    oauthlib==3.1.1
    opencv-python==4.5.3.56
    openpyxl==3.0.7
    opt-einsum==3.3.0
    packaging==20.9
    pandas==1.2.4
    pandocfilters==1.4.3
    parsel==1.6.0
    parso==0.8.2
    partd==1.2.0
    pickleshare==0.7.5
    Pillow==7.1.2
    priority==1.3.0
    progressbar2==3.53.1
    prometheus-client==0.11.0
    promise==2.3
    prompt-toolkit==3.0.19
    Protego==0.1.16
    protobuf==3.17.3
    psutil==5.8.0
    pyarrow==4.0.1
    pyasn1==0.4.8
    pyasn1-modules==0.2.8
    pycodestyle==2.7.0
    pycparser==2.20
    PyDispatcher==2.0.5
    pyerfa==2.0.0
    pyflakes==2.3.1
    Pygments==2.9.0
    PyMySQL==1.0.2
    PyOpenGL==3.1.5
    pyOpenSSL==20.0.1
    pyparsing==2.4.7
    pyrsistent==0.17.3
    python-dateutil==2.8.1
    python-utils==2.5.6
    pythreejs==2.3.0
    pytz==2021.1
    pywin32==301
    pywinpty==1.1.2
    PyYAML==5.4.1
    pyzmq==22.1.0
    queuelib==1.6.1
    requests==2.25.1
    requests-oauthlib==1.3.0
    rsa==4.7.2
    Rx==1.6.1
    scikit-learn==0.24.2
    scipy==1.4.1
    Scrapy==2.5.0
    seaborn==0.11.1
    Send2Trash==1.5.0
    service-identity==21.1.0
    simplejson==3.17.3
    six==1.16.0
    soupsieve==2.2.1
    SQLAlchemy==1.4.20
    tables==3.6.1
    tabulate==0.8.9
    tensorboard==2.5.0
    tensorboard-data-server==0.6.1
    tensorboard-plugin-wit==1.8.0
    tensorflow-cpu==2.3.0
    tensorflow-estimator==2.3.0
    termcolor==1.1.0
    terminado==0.10.1
    testpath==0.5.0
    threadpoolctl==2.1.0
    toml==0.10.2
    toolz==0.11.1
    torch==1.9.0
    torchvision==0.10.0
    tornado==6.1
    traitlets==5.0.5
    traittypes==0.2.1
    tushare==1.2.64
    Twisted==21.7.0
    twisted-iocpsupport==1.0.1
    typing-extensions==3.10.0.0
    urllib3==1.26.5
    vaex==4.3.0
    vaex-astro==0.8.2
    vaex-core==4.3.0.post1
    vaex-hdf5==0.8.0
    vaex-jupyter==0.6.0
    vaex-ml==0.12.0
    vaex-server==0.5.0
    vaex-viz==0.5.0
    vboxapi==1.0
    w3lib==1.22.0
    wcwidth==0.2.5
    webencodings==0.5.1
    websocket-client==1.2.1
    Werkzeug==2.0.1
    widgetsnbextension==3.5.1
    wrapt==1.12.1
    xarray==0.18.2
    xlrd==2.0.1
    yapf==0.31.0
    zope.interface==5.4.0
    View Code
  • 相关阅读:
    vim高亮
    mengning
    4.4内核osal
    tmpvalgrind
    为什么引入协程
    alloc_call_show(转)
    TSAN
    如何查看哪些进程占用Buffer和Cache高(转)
    ASAN详解其他参考链接
    Linux系统与程序监控工具atop教程(转)
  • 原文地址:https://www.cnblogs.com/mrguoguo/p/15588530.html
Copyright © 2011-2022 走看看