zoukankan      html  css  js  c++  java
  • 实验二 K-近邻算法及应用

    【作业信息】

    作业课程 机器学习
    作业要求 作业要求
    作业目标 掌握K-近邻算法及应用
    学号 3180205402

    一、实验目的

    1.理解K-近邻算法原理,能实现算法K近邻算法;

    2.掌握常见的距离度量方法;

    3.掌握K近邻树实现算法;

    4.针对特定应用场景及数据,能应用K近邻解决实际问题。

    二、实验内容

    1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。

    2.实现K近邻树算法;

    3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。

    4.针对iris数据集,编制程序使用K近邻树进行类别预测。

    三、实验报告要求

    1.对照实验内容,撰写实验过程、算法及测试结果;

    2.代码规范化:命名规则、注释;

    3.分析核心算法的复杂度;

    4.查阅文献,讨论K近邻的优缺点;

    5.举例说明K近邻的应用场景。

    四、实验过程及步骤

    k近邻法

    k近邻法是一种基本的分类与回归方法。k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多值。k近邻法思想:1. 根据给定的距离度量方法,找出训练数据集中与实例x最相邻的k个点;2. 在k 个点中,根据分类决策规则,决定x 的类别。 k近邻法中,当训练数据集、距离度量、k值、分类决策规则确定后,对于任何一个新的输入实例,它所属的类唯一的确定;这相当于将特征空间划分为一些子空间,确定子空间里每一个点所属的类。

    KNN算法的一般流程——

    收集数据:可以使用任何方法

    准备数据:距离计算所需要的数值,最后是结构化的数 据格式。

    分析数据:可以使用任何方法

    训练算法: (此步骤kNN)中不适用

    测试算法:计算错误率

    使用算法:首先需要输入样本数据和结构化的输出结果, 然后运行k-近邻算法判定输入数据分别属于哪个分类, 最后应用对计算出的分类执行后续的处理。

    import math
    #导入数学运算函数
    from itertools import combinations
    

    itertools模块是python的一个内置模块,它提供了非常有用的用于操作迭代对象的函数。
    Python的itertools库中提供了combinations方法可以轻松的实现排列组合。

    • p = 1 曼哈顿距离
    • p = 2 欧氏距离
    • p = inf 闵式距离minkowski_distance
    #计算欧式距离
    def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]  在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
        if len(x) == len(y) and len(x) > 1:
        # 当两个特征的维数相等时,并且维度大于1时。
            sum = 0
            # 目前总的损失函数值为0
            for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。
                sum += math.pow(abs(x[i] - y[i]), p)
                # math.pow( x, y )函数是计算x的y次方。
            return math.pow(sum, 1/p)# 距离公式。
        else:
            return 0
    
    # 课本例3.1
    #数据准备
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]
    
    # x1, x2
    #输入数据
    for i in range(1, 5):
        r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
        # 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。
        print(min(zip(r.values(), r.keys())))
        print(min(zip(r.values(), r.keys())))
    


    python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    ##载入Fisher的鸢尾花数据
    from sklearn.model_selection import train_test_split
    from collections import Counter
    
    # data
    iris = load_iris()#中文名是安德森鸢尾花卉数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)#是一个表格 
    #加入一列为分类标签
    df['label'] = iris.target# 表头字段就是key
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    # 选择其中的4个特征进行训练
    # data = np.array(df.iloc[:100, [0, 1, -1]])
    
    df
    #输出表格
    

    花萼长度 花萼宽度 花瓣长度 花瓣宽度 类别

    #数据进行可视化
    #将标签为0、1的两种花,根据特征为长度和宽度打点表示
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    #取数据,并且分成训练和测试集合
    data = np.array(df.iloc[:100, [0, 1, -1]])
    #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
    X, y = data[:,:-1], data[:,-1]
    #X为sepal length,sepal width y为标签 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
    
    #定义模型
    class KNN:
        def __init__(self, X_train, y_train, n_neighbors=3, p=2):
            """
            parameter: n_neighbors 临近点个数
            parameter: p 距离度量
            """
            self.n = n_neighbors#临近点个数
            self.p = p#距离度量
            self.X_train = X_train
            self.y_train = y_train
        
        def predict(self, X):
            # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
            # 取距离最小的k个点:先取前k个,然后遍历替换
            # knn_list存“距离”和“label”
            knn_list = []
            for i in range(self.n):
                #np.linalg.norm 求范数
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                knn_list.append((dist, self.y_train[i]))
            #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
            #保证knn_list列表中的点是距离最小的点
            for i in range(self.n, len(self.X_train)):
                max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                #g更新最近邻中距离比当前点远的点
                if knn_list[max_index][0] > dist:
                    knn_list[max_index] = (dist, self.y_train[i])
            # 统计
            # 统计分类最多的点,确定预测数据的分类
            knn = [k[-1] for k in knn_list]
            #counter为计数器,按照标签计数
            count_pairs = Counter(knn) 
            #排序
            max_count = sorted(count_pairs, key=lambda x:x)[-1]
            return max_count
    
        #预测的正确率
        def score(self, X_test, y_test):
            right_count = 0
            n = 10
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right_count += 1
            return right_count / len(X_test)
    

    max(num,key=lambda x: x[0])用法:
    x:x[]字母可以随意修改,求最大值方式按照中括号[]里面的维度,
    [0]按照第一维,
    [1]按照第二维

    clf = KNN(X_train, y_train)
    
    clf.score(X_test, y_test)
    

    #预测点
    test_point = [6.0, 3.0]
    #预测结果
    print('Test Point: {}'.format(clf.predict(test_point)))
    

    Test Point: 1.0

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    #打印预测点
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    from sklearn.neighbors import KNeighborsClassifier
    
    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)
    

    clf_sk.score(X_test, y_test)
    

    sklearn.neighbors.KNeighborsClassifier

    • n_neighbors: 临近点个数
    • p: 距离度量
    • algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
    • weights: 确定近邻的权重

    kd树

    # kd-tree每个结点中主要包含的数据结构如下
    class KdNode(object):
        def __init__(self, dom_elt, split, left, right):
            self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
            self.split = split # 整数(进行分割维度的序号)
            self.left = left # 该结点分割超平面左子空间构成的kd-tree
            self.right = right # 该结点分割超平面右子空间构成的kd-tree
    class KdTree(object):
        def __init__(self, data):
            k = len(data[0]) # 数据维度
            
            def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
                if not data_set: # 数据集为空
                    return None
                # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
                # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
                #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
                data_set.sort(key=lambda x: x[split])
                split_pos = len(data_set) // 2 # //为Python中的整数除法
                median = data_set[split_pos] # 中位数分割点
                split_next = (split + 1) % k # cycle coordinates
    
                # 递归的创建kd树
                return KdNode(median, split,
                            CreateNode(split_next, data_set[:split_pos]), # 创建左子树
                            CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
            
            self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
            
    # KDTree的前序遍历
    def preorder(root):
        print (root.dom_elt)
        if root.left: # 节点不为空
            preorder(root.left)
        if root.right:
            preorder(root.right)
    
    # 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
    from math import sqrt
    from collections import namedtuple
    
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
    
    def find_nearest(tree, point):
        k = len(point) # 数据维度
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
            
            nodes_visited = 1
            
            s = kd_node.split # 进行分割的维度
            pivot = kd_node.dom_elt # 进行分割的“轴”
            
            if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
                nearer_node = kd_node.left # 下一个访问节点为左子树根节点
                further_node = kd_node.right # 同时记录下右子树
            else: # 目标离右子树更近
                nearer_node = kd_node.right # 下一个访问节点为右子树根节点
                further_node = kd_node.left
    
            temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
            
            nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
            dist = temp1.nearest_dist # 更新最近距离
    
            nodes_visited += temp1.nodes_visited
    
            if dist < max_dist:
                max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
    
            temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
            if max_dist < temp_dist: # 判断超球体是否与超平面相交
                return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
            
            #----------------------------------------------------------------------
            # 计算目标点与分割点的欧氏距离
            temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
    
            if temp_dist < dist: # 如果“更近”
                nearest = pivot # 更新最近点
                dist = temp_dist # 更新最近距离
                max_dist = dist # 更新超球体半径
    
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point # 更新最近点
                dist = temp2.nearest_dist # 更新最近距离
    
            return result(nearest, dist, nodes_visited)
        return travel(tree.root, point, float("inf")) # 从根节点开始递归
    
    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd = KdTree(data)
    preorder(kd.root)
    

    from time import clock
    from random import random
    
    # 产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k):
        return [random() for _ in range(k)]
    # 产生n个k维随机向量
    def random_points(k, n):
        return [random_point(k) for _ in range(n)]
    
    ret = find_nearest(kd, [3,4.5])
    print (ret)
    

    N = 400000
    t0 = clock()
    kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
    t1 = clock()
    print ("time: ",t1-t0, "s")
    print (ret2)
    

    
    

    五、实验小结

    k近邻法使用的模型实际上对应于对特征空间的划分,模型由三个基本要素决定——距离度量、k值选择、分类决策规则。
    k近邻法中,当训练集、距离度量、k值、分类决策规则确定后,对于任一新的实例,其所属类别唯一确定。
    k近邻模型的距离度量一般使用欧式距离,也可以是更一般的距离或Minkowski距离。
    如果选择较小的K值:“学习”的近似误差(approximation error)会减小,但 “学习”的估计误差(estimation error) 会增大;噪声敏感 ;K值的减小就意味着整体模型变得复杂,容易发生过拟合。

    如果选择较大的K值,减少学习的估计误差,但缺点是学习的近似误差会增大。K值的增大就意味着整体的模型变得简单。

  • 相关阅读:
    汇编入门学习笔记 (十二)—— int指令、port
    c#List泛型数据扩展,把List&lt;&gt;型数据格式化成List&lt;SelectListItem&gt;,用来作dropdownlist的数据
    使用 Jersey 和 Apache Tomcat 构建 RESTful Web 服务
    Centos6.5 VNC 配置
    HP服务器更换主板前后的注意事项
    【转】BCSphere入门教程01:Immediate Alert--不错
    【转】命令行使用7zip
    【转】 Android BCM4330 蓝牙BT驱动调试记录
    【转】android-support-v7-appcompat.jar 的安装及相关问题解决 --- 汇总整理
    【转】如何在eclipse里关联查看android源码
  • 原文地址:https://www.cnblogs.com/ms841952238/p/14750543.html
Copyright © 2011-2022 走看看