zoukankan      html  css  js  c++  java
  • 实验四 决策树算法及应用

    【作业信息】

    作业课程 机器学习
    作业要求 作业要求
    作业目标 决策树算法及应用
    学号 3180205402

    一、实验目的

    1.理解决策树算法原理,掌握决策树算法框架;
    2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
    3.能根据不同的数据类型,选择不同的决策树算法;
    4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

    二、实验内容

    1.设计算法实现熵、经验条件熵、信息增益等方法。
    2.实现ID3算法。
    3.熟悉sklearn库中的决策树算法;
    4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
    5.针对iris数据集,利用自编决策树算法进行类别预测。

    三、实验报告要求

    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论ID3、5算法的应用场景;
    5.查询文献,分析决策树剪枝策略。

    四、实验过程及步骤

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    from math import log
    import pprint
    
    datasets, labels = create_data()
    
    train_data = pd.DataFrame(datasets, columns=labels)
    
    train_data
    

    # 熵
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
        return ent
    # def entropy(y):
    # """
    # Entropy of a label sequence
    # """
    # hist = np.bincount(y)
    # ps = hist / np.sum(hist)
    # return -np.sum([p * np.log2(p) for p in ps if p > 0])
    # 经验条件熵
    def cond_ent(datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum(
            [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
        return cond_ent
    # 信息增益
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    def info_gain_train(datasets):
        count = len(datasets[0]) - 1
        ent = calc_ent(datasets)
    # ent = entropy(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
            print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    
    info_gain_train(np.array(datasets))
    

    # 定义节点类 二叉树
    class Node:
        def __init__(self, root=True, label=None, feature_name=None, feature=None):
            self.root = root
            self.label = label
            self.feature_name = feature_name
            self.feature = feature
            self.tree = {}
            self.result = {
                'label:': self.label,
                'feature': self.feature,
                'tree': self.tree
            }
        def __repr__(self):
            return '{}'.format(self.result)
        def add_node(self, val, node):
            self.tree[val] = node
        def predict(self, features):
            if self.root is True:
                return self.label
            return self.tree[features[self.feature]].predict(features)
    class DTree:
        def __init__(self, epsilon=0.1):
            self.epsilon = epsilon
            self._tree = {}
        # 熵
        @staticmethod
        def calc_ent(datasets):
            data_length = len(datasets)
            label_count = {}
            for i in range(data_length):
                label = datasets[i][-1]
                if label not in label_count:
                    label_count[label] = 0
                label_count[label] += 1
            ent = -sum([(p / data_length) * log(p / data_length, 2)
                        for p in label_count.values()])
            return ent
        # 经验条件熵
        def cond_ent(self, datasets, axis=0):
            data_length = len(datasets)
            feature_sets = {}
            for i in range(data_length):
                feature = datasets[i][axis]
                if feature not in feature_sets:
                    feature_sets[feature] = []
                feature_sets[feature].append(datasets[i])
            cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                            for p in feature_sets.values()])
            return cond_ent
        # 信息增益
        @staticmethod
        def info_gain(ent, cond_ent):
            return ent - cond_ent
        def info_gain_train(self, datasets):
            count = len(datasets[0]) - 1
            ent = self.calc_ent(datasets)
            best_feature = []
            for c in range(count):
                c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
                best_feature.append((c, c_info_gain))
            # 比较大小
            best_ = max(best_feature, key=lambda x: x[-1])
            return best_
        def train(self, train_data):
            """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树T
            """
            _, y_train, features = train_data.iloc[:, :
                                                    -1], train_data.iloc[:,
                                                                        -1], train_data.columns[:
                                                                                                -1]
            # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
            if len(y_train.value_counts()) == 1:
                return Node(root=True, label=y_train.iloc[0])
            # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
            if len(features) == 0:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
            max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
            max_feature_name = features[max_feature]
            # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
            if max_info_gain < self.epsilon:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 5,构建Ag子集
            node_tree = Node(
                root=False, feature_name=max_feature_name, feature=max_feature)
            feature_list = train_data[max_feature_name].value_counts().index
            for f in feature_list:
                sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                                f].drop([max_feature_name], axis=1)
                # 6, 递归生成树
                sub_tree = self.train(sub_train_df)
                node_tree.add_node(f, sub_tree)
            # pprint.pprint(node_tree.tree)
            return node_tree
        def fit(self, train_data):
            self._tree = self.train(train_data)
            return self._tree
        def predict(self, X_test):
            return self._tree.predict(X_test)
    
    datasets, labels = create_data()
    data_df = pd.DataFrame(datasets, columns=labels)
    dt = DTree()
    tree = dt.fit(data_df)
    
    tree
    

    dt.predict(['老年', '否', '否', '一般'])
    

    # data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = [
            'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
        ]
        data = np.array(df.iloc[:100, [0, 1, -1]])
        # print(data)
        return data[:, :2], data[:, -1]
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import export_graphviz
    import graphviz
    
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train,)
    

    clf.score(X_test, y_test)
    

    tree_pic = export_graphviz(clf, out_file="mytree.pdf")
    with open('mytree.pdf') as f:
        dot_graph = f.read()
    
    graphviz.Source(dot_graph)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn import preprocessing
    import numpy as np
    import pandas as pd
    from sklearn import tree
    import graphviz
    features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
    X_train = pd.DataFrame([
        ["青年", "否", "否", "一般"],
        ["青年", "否", "否", "好"],
        ["青年", "是", "否", "好"],
        ["青年", "是", "是", "一般"],
        ["青年", "否", "否", "一般"],
        ["中年", "否", "否", "一般"],
        ["中年", "否", "否", "好"],
        ["中年", "是", "是", "好"],
        ["中年", "否", "是", "非常好"],
        ["中年", "否", "是", "非常好"],
        ["老年", "否", "是", "非常好"],
        ["老年", "否", "是", "好"],
        ["老年", "是", "否", "好"],
        ["老年", "是", "否", "非常好"],
        ["老年", "否", "否", "一般"]
    ])
    y_train = pd.DataFrame(["否", "否", "是", "是", "否",
                            "否", "否", "是", "是", "是",
                            "是", "是", "是", "是", "否"])
    # 数据预处理
    le_x = preprocessing.LabelEncoder()
    le_x.fit(np.unique(X_train))
    X_train = X_train.apply(le_x.transform)
    le_y = preprocessing.LabelEncoder()
    le_y.fit(np.unique(y_train))
    y_train = y_train.apply(le_y.transform)
    # 调用sklearn.DT建立训练模型
    model_tree = DecisionTreeClassifier()
    model_tree.fit(X_train, y_train)
    # 可视化
    dot_data = tree.export_graphviz(model_tree, out_file=None,
                                        feature_names=features,
                                        class_names=[str(k) for k in np.unique(y_train)],
                                        filled=True, rounded=True,
                                        special_characters=True)
    graph = graphviz.Source(dot_data)
    graph
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn import preprocessing
    import numpy as np
    import pandas as pd
    from sklearn import tree
    import graphviz
    features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
    X_train = pd.DataFrame([
        ["青年", "否", "否", "一般"],
        ["青年", "否", "否", "好"],
        ["青年", "是", "否", "好"],
        ["青年", "是", "是", "一般"],
        ["青年", "否", "否", "一般"],
        ["中年", "否", "否", "一般"],
        ["中年", "否", "否", "好"],
        ["中年", "是", "是", "好"],
        ["中年", "否", "是", "非常好"],
        ["中年", "否", "是", "非常好"],
        ["老年", "否", "是", "非常好"],
        ["老年", "否", "是", "好"],
        ["老年", "是", "否", "好"],
        ["老年", "是", "否", "非常好"],
        ["老年", "否", "否", "一般"]
    ])
    y_train = pd.DataFrame(["否", "否", "是", "是", "否",
                            "否", "否", "是", "是", "是",
                            "是", "是", "是", "是", "否"])
    # 数据预处理
    le_x = preprocessing.LabelEncoder()
    le_x.fit(np.unique(X_train))
    X_train = X_train.apply(le_x.transform)
    le_y = preprocessing.LabelEncoder()
    le_y.fit(np.unique(y_train))
    y_train = y_train.apply(le_y.transform)
    # 调用sklearn.DT建立训练模型
    model_tree = DecisionTreeClassifier()
    model_tree.fit(X_train, y_train)
    # 可视化
    dot_data = tree.export_graphviz(model_tree, out_file=None,
                                        feature_names=features,
                                        class_names=[str(k) for k in np.unique(y_train)],
                                        filled=True, rounded=True,
                                        special_characters=True)
    graph = graphviz.Source(dot_data)
    graph
    

    import numpy as np
    class LeastSqRTree:
        def __init__(self, train_X, y, epsilon):
            # 训练集特征值
            self.x = train_X
            # 类别
            self.y = y
            # 特征总数
            self.feature_count = train_X.shape[1]
            # 损失阈值
            self.epsilon = epsilon
            # 回归树
            self.tree = None
        def _fit(self, x, y, feature_count, epsilon):
            # 选择最优切分点变量j与切分点s
            (j, s, minval, c1, c2) = self._divide(x, y, feature_count)
            # 初始化树
            tree = {"feature": j, "value": x[s, j], "left": None, "right": None}
            if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1:
                tree["left"] = c1
            else:
                tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])],
                                         y[np.where(x[:, j] <= x[s, j])],
                                         self.feature_count, self.epsilon)
            if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1:
                tree["right"] = c2
            else:
                tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])],
                                          y[np.where(x[:, j] > x[s, j])],
                                          self.feature_count, self.epsilon)
            return tree
        def fit(self):
            self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon)
        @staticmethod
        def _divide(x, y, feature_count):
            # 初始化损失误差
            cost = np.zeros((feature_count, len(x)))
            # 公式5.21
            for i in range(feature_count):
                for k in range(len(x)):
                    # k行i列的特征值
                    value = x[k, i]
                    y1 = y[np.where(x[:, i] <= value)]
                    c1 = np.mean(y1)
                    y2 = y[np.where(x[:, i] > value)]
                    c2 = np.mean(y2)
                    y1[:] = y1[:] - c1
                    y2[:] = y2[:] - c2
                    cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2)
            # 选取最优损失误差点
            cost_index = np.where(cost == np.min(cost))
            # 选取第几个特征值
            j = cost_index[0][0]
            # 选取特征值的切分点
            s = cost_index[1][0]
            # 求两个区域的均值c1,c2
            c1 = np.mean(y[np.where(x[:, j] <= x[s, j])])
            c2 = np.mean(y[np.where(x[:, j] > x[s, j])])
            return j, s, cost[cost_index], c1, c2
    
    train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T
    y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00])
    model_tree = LeastSqRTree(train_X, y, .2)
    model_tree.fit()
    model_tree.tree
    

    五、实验小结

    通过此次实验,我学习到分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。
    决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。
    决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、 C4.5和CART。

  • 相关阅读:
    Ink——一款使用React风格开发命令行界面应用(CLI App)的nodejs工具
    编程语言相关名词解释汇总
    使用Webpack对Css文件压缩处理的思考
    一种通过async/await实现函数同步执行的方式
    成长的道路上,我很幸运
    Todolist分别用React与Vue的实现与思考
    Unity 框架篇
    扇形技能指示器
    C# Socket和protoBuf新手村教程
    判断点在多边形内部
  • 原文地址:https://www.cnblogs.com/ms841952238/p/14953255.html
Copyright © 2011-2022 走看看