zoukankan      html  css  js  c++  java
  • 【撸码caffe 二】 blob.hpp

    Blob类是caffe中对处理和传递的实际数据的封装,是caffe中基本的数据存储单元,包括前向传播中的图像数据,反向传播中的梯度数据以及网络层间的中间数据变量(包括权值,偏置等),训练模型的参数等等,可以说在caffe中,无数据不blob。

    blob可以认为是按C风格连续存储的N维数组,在硬件上可以认为是在内存中的一块连续的内存块。


    补充一点智能指针的知识:

    C++中的动态内存管理是通过new和delete运算符完成的,没有及时delete释放内存或者提前释放内存都可能造成内存异常,导致内存泄漏,或者是引用了非法的内存指针。

    C++ 11 标准库提供了智能指针(smart pointer)来管理动态内存对象,这种智能指针的智能之处在于可以自动释放内存对象。智能指针分为两种,一种是shared_ptr,允许多了个指针同时指向同一个对象,另一种是unique_ptr,同时只能有一个指针指向内存对象。 智能指针是模板类而不是指针,创建一个智能指针时,必须指出智能指针的对象可以指向的类型。


    blob.hpp文件注释:

    #ifndef CAFFE_BLOB_HPP_
    #define CAFFE_BLOB_HPP_
    
    #include <algorithm>
    #include <string>
    #include <vector>
    
    #include "caffe/common.hpp"
    #include "caffe/proto/caffe.pb.h"
    #include "caffe/syncedmem.hpp"
    
    //const类型的整形kMaxBlobAxes定义了Blob最大的维度,Blob的一般维度是4,图像数量*图像通道*图像宽度*图像高度
    const int kMaxBlobAxes = 32;
    
    namespace caffe {   //Blob类也定义在caffe命名空间下
    
    	/**
    	 * @brief A wrapper around SyncedMemory holders serving as the basic
    	 *        computational unit through which Layer%s, Net%s, and Solver%s
    	 *        interact.
    	 *
    	 * TODO(dox): more thorough description.
    	 */
    	template <typename Dtype>    //类模板
    	class Blob {
    	public:
    		Blob()       //无参构造函数
    			: data_(), diff_(), count_(0), capacity_(0) {}
    
    		//explicit关键字的作用是防止单参数构造函数的隐式转换, 对于含有多个未初始化值的构造函数无效
    		//shape是一个int型的向量,包含一个blob的维度,图像深度,高,宽信息
    		//这两个构造函数都会在内部调用Reshape函数,用来设置或者修改当前blob的shape_,count_和capacity_属性
    		/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
    		explicit Blob(const int num, const int channels, const int height,
    			const int width);
    		explicit Blob(const vector<int>& shape);
    
    		/// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
    
    		//Reshape函数的作用是创建或调整blob的shape_,count_和capacity_属性
    		void Reshape(const int num, const int channels, const int height,
    			const int width);
    		/*
    		 * @brief Change the dimensions of the blob, allocating new memory if
    		 *        necessary.
    		 *Reshape函数可以用来创建一个初始化的内存分配信息,也可以调整前向传播过程中网络层的数据输出尺度
    		 * This function can be called both to create an initial allocation
    		 * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
    		 blob的大小改变后,只有在已分配的内存不够的情况下才会重新分配内存, 并且新增的内存将不会被释放
    		 * or Layer::Forward.When changing the size of blob, memory will only be
    		 * reallocated if sufficient memory does not already exist, and excess memory
    		 * will never be freed.
    		 *需要注意的是直接改变输入blob的大小是错误的,它们应该在数据从低层向高层的传播中数据量增加的时候被调用
    		 * Note that reshaping an input blob and immediately calling Net::Backward is
    		 * an error; either Net::Forward or Net::Reshape need to be called to
    		 * propagate the new input shape to higher layers.
    		 */
    		//通过类型为vector<int>类型的shape设置shape_,count_和capacity_ 的大小
    		void Reshape(const vector<int>& shape);
    		//通过类型为BlobShape类对象shape设置shape_,count_和capacity_ 的大小
    		//BlobShape是在caffe.pb.h中定义的类,含有维度信息,继承自protobuf::Message
    		void Reshape(const BlobShape& shape);
    		//通过其他的blob对象类设置bolb的shape_,count_和capacity_ 的大小
    		void ReshapeLike(const Blob& other);
    		//inline定义的是内联函数,作用是将代码直接复制到调用处,节省函数调用开销,代价是增加了代码量
    		//shape_string 函数用于获取bolb的打印信息(shape_和count_值)
    		inline string shape_string() const {
    			ostringstream stream;
    			for (int i = 0; i < shape_.size(); ++i) {
    				stream << shape_[i] << " ";
    			}
    			stream << "(" << count_ << ")";
    			return stream.str();
    		}
    		//获取当前blob的shape_信息
    		inline const vector<int>& shape() const { return shape_; }
    		/**
    		* @brief Returns the dimension of the index-th axis (or the negative index-th
    		*        axis from the end, if index is negative).
    		*
    		* @param index the axis index, which may be negative as it will be
    		*        "canonicalized" using CanonicalAxisIndex.
    		*        Dies on out of range index.
    		*/
    		//获取当前指定blob指定索引的维度值
    		inline int shape(int index) const {
    			return shape_[CanonicalAxisIndex(index)];
    		}
    		//获取blob的维数
    		inline int num_axes() const { return shape_.size(); }
    		//获取blob的元素个数
    		inline int count() const { return count_; }
    
    		/**
    		 * @brief Compute the volume of a slice; i.e., the product of dimensions
    		 *        among a range of axes.
    		 *
    		 * @param start_axis The first axis to include in the slice.
    		 *
    		 * @param end_axis The first axis to exclude from the slice.
    		 */
    		//根据指定的开始维度和结束维度计算blob元素的个数
    		inline int count(int start_axis, int end_axis) const {
    			CHECK_LE(start_axis, end_axis);
    			CHECK_GE(start_axis, 0);
    			CHECK_GE(end_axis, 0);
    			CHECK_LE(start_axis, num_axes());
    			CHECK_LE(end_axis, num_axes());
    			int count = 1;
    			for (int i = start_axis; i < end_axis; ++i) {
    				count *= shape(i);
    			}
    			return count;
    		}
    		/**
    		 * @brief Compute the volume of a slice spanning from a particular first
    		 *        axis to the final axis.
    		 *
    		 * @param start_axis The first axis to include in the slice.
    		 */
    
    		//根据指定的开始维度计算剩下的blob元素个数,内部是通过调用上边定义的count函数实现的
    		inline int count(int start_axis) const {
    			return count(start_axis, num_axes());
    		}
    
    		/**
    		 * @brief Returns the 'canonical' version of a (usually) user-specified axis,
    		 *        allowing for negative indexing (e.g., -1 for the last axis).
    		 *
    		 * @param axis_index the axis index.
    		 *        If 0 <= index < num_axes(), return index.
    		 *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
    		 *        e.g., the last axis index (num_axes() - 1) if index == -1,
    		 *        the second to last if index == -2, etc.
    		 *        Dies on out of range index.
    		 */
    		//CanonicalAxisIndex是用于对blob的axis_index进行转化,允许axis_index的值是负值,通过
    		//CanonicalAxisIndex函数内定义的规则,转换成正值
    		inline int CanonicalAxisIndex(int axis_index) const {
    			CHECK_GE(axis_index, -num_axes())
    				<< "axis " << axis_index << " out of range for " << num_axes()
    				<< "-D Blob with shape " << shape_string();
    			CHECK_LT(axis_index, num_axes())
    				<< "axis " << axis_index << " out of range for " << num_axes()
    				<< "-D Blob with shape " << shape_string();
    			if (axis_index < 0) {
    				return axis_index + num_axes();
    			}
    			return axis_index;
    		}
    
    		//获取当前blob的维度,推荐直接使用shape(0)获取
    		/// @brief Deprecated legacy shape accessor num: use shape(0) instead.
    		inline int num() const { return LegacyShape(0); }
    		//获取当前blob的通道数(深度),推荐直接使用shape(1)获取
    		/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
    		inline int channels() const { return LegacyShape(1); }
    		//获取当前blob的图像高度信息,推荐直接使用shape(2)获取
    		/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
    		inline int height() const { return LegacyShape(2); }
    		//获取当前blob的图像宽度信息,推荐直接使用shape(3)获取
    		/// @brief Deprecated legacy shape accessor  use shape(3) instead.
    		inline int width() const { return LegacyShape(3); }
    
    		//获取某一维度index下的信息,index要求在[0,3]或[-4,-1]区间内,貌似是对shape函数的封装,只是增加了形参的判定
    		inline int LegacyShape(int index) const {
    			CHECK_LE(num_axes(), 4)
    				<< "Cannot use legacy accessors on Blobs with > 4 axes.";
    			CHECK_LT(index, 4);
    			CHECK_GE(index, -4);
    			if (index >= num_axes() || index < -num_axes()) {
    				// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
    				// indexing) -- this special case simulates the one-padding used to fill
    				// extraneous axes of legacy blobs.
    				return 1;
    			}
    			return shape(index);
    		}
    
    		//通过blob的维度n,通道(图像深度)c,图像高度h和图像宽度w计算偏移量,由该偏移量可以
    		//唯一定位到bolb内的一张图像上的一个像素上
    		inline int offset(const int n, const int c = 0, const int h = 0,
    			const int w = 0) const {
    			CHECK_GE(n, 0);
    			CHECK_LE(n, num());
    			CHECK_GE(channels(), 0);
    			CHECK_LE(c, channels());
    			CHECK_GE(height(), 0);
    			CHECK_LE(h, height());
    			CHECK_GE(width(), 0);
    			CHECK_LE(w, width());
    			return ((n * channels() + c) * height() + h) * width() + w;
    		}
    
    		//根据vector<int>类型的indices计算偏移量
    		inline int offset(const vector<int>& indices) const {
    			CHECK_LE(indices.size(), num_axes());
    			int offset = 0;
    			for (int i = 0; i < num_axes(); ++i) {
    				offset *= shape(i);
    				if (indices.size() > i) {
    					CHECK_GE(indices[i], 0);
    					CHECK_LT(indices[i], shape(i));
    					offset += indices[i];
    				}
    			}
    			return offset;
    		}
    		/**
    		 * @brief Copy from a source Blob.
    		 *
    		 * @param source the Blob to copy from
    		 * @param copy_diff if false, copy the data; if true, copy the diff
    		 * @param reshape if false, require this Blob to be pre-shaped to the shape
    		 *        of other (and die otherwise); if true, Reshape this Blob to other's
    		 *        shape if necessary
    		 */
    
    		//复制外部的blob数据到本blob,根据情况拷贝data_数据还是diff_数据,以及是否重新分配大小
    		void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
    			bool reshape = false);
    
    		//根据给定的维度,深度,宽高位置信息获取前向传播数据的一个元素的值
    		inline Dtype data_at(const int n, const int c, const int h,
    			const int w) const {
    			return cpu_data()[offset(n, c, h, w)];
    		}
    
    		//根据给定的维度,深度,宽高位置信息获取反向传播梯度diff_的一个元素的值
    		inline Dtype diff_at(const int n, const int c, const int h,
    			const int w) const {
    			return cpu_diff()[offset(n, c, h, w)];
    		}
    
    		//获取前向传播数据data_的指针
    		inline Dtype data_at(const vector<int>& index) const {
    			return cpu_data()[offset(index)];
    		}
    
    		//获取反向传播梯度diff_的指针
    		inline Dtype diff_at(const vector<int>& index) const {
    			return cpu_diff()[offset(index)];
    		}
    
    		//获取前向传播数据对象
    		inline const shared_ptr<SyncedMemory>& data() const {
    			CHECK(data_);
    			return data_;
    		}
    
    		//获取反向传播梯度对象
    		inline const shared_ptr<SyncedMemory>& diff() const {
    			CHECK(diff_);
    			return diff_;
    		}
    
    		const Dtype* cpu_data() const;     //定义的获取cpu数据指针函数
    		void set_cpu_data(Dtype* data);   //设置cpu数据
    		const int* gpu_shape() const;       //返回GPU shape_数据指针
    		const Dtype* gpu_data() const;    //返回GPU 数据指针
    		const Dtype* cpu_diff() const;      //返回CPU上反向传播的梯度数据指针
    		const Dtype* gpu_diff() const;      //返回GPU上反向传播的梯度数据指针
    		Dtype* mutable_cpu_data();          //以下加上mutable代表可以修改获取到的数据
    		Dtype* mutable_gpu_data();
    		Dtype* mutable_cpu_diff();
    		Dtype* mutable_gpu_diff();
    
    		//梯度下降过程中训练参数更新
    		void Update();
    		//从BlobProto中导入数据到当前blob,完成数据解析(反序列化)
    		void FromProto(const BlobProto& proto, bool reshape = true);
    		//把blob数据导入BlobProto,完成数据序列化
    		void ToProto(BlobProto* proto, bool write_diff = false) const;
    
    		//计算data_的L1范式:向量中各个元素绝对值之和
    		/// @brief Compute the sum of absolute values (L1 norm) of the data.
    		Dtype asum_data() const;
    
    		//计算diff_的L1范式:向量中各个元素绝对值之和
    		/// @brief Compute the sum of absolute values (L1 norm) of the diff.
    		Dtype asum_diff() const;
    
    		//计算data_的L2范式:向量中各个元素的平方和
    		/// @brief Compute the sum of squares (L2 norm squared) of the data.
    		Dtype sumsq_data() const;
    
    		//计算diff_的L2范式:向量中各个元素的平方和
    		/// @brief Compute the sum of squares (L2 norm squared) of the diff.
    		Dtype sumsq_diff() const;
    
    		//将data_数据乘以一个系数scale_factor
    		/// @brief Scale the blob data by a constant factor.
    		void scale_data(Dtype scale_factor);
    
    		//将diff _数据乘以一个系数scale_factor
    		/// @brief Scale the blob diff by a constant factor.
    		void scale_diff(Dtype scale_factor);
    
    		/**
    		 * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
    		 *        data_ of Blob other -- useful in Layer%s which simply perform a copy
    		 *        in their Forward pass.
    		 *
    		 * This deallocates the SyncedMemory holding this Blob's data_, as
    		 * shared_ptr calls its destructor when reset with the "=" operator.
    		 */
    
    		//将外部一个Blob对象的数据指针指向当前的blob的数据data_,从而实现数据共享
    		void ShareData(const Blob& other);
    		/**
    		 * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
    		 *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
    		 *        in their Forward pass.
    		 *
    		 * This deallocates the SyncedMemory holding this Blob's diff_, as
    		 * shared_ptr calls its destructor when reset with the "=" operator.
    		 */
    
    		//将外部一个Blob对象的梯度指针指向当前的blob的数据diff_,从而实现数据共享
    		void ShareDiff(const Blob& other);
    
    		//判断当前blob的shape_和BlobProto中的shape_是否相同
    		bool ShapeEquals(const BlobProto& other);
    
    	protected:
    		//后缀加上_表示是Blob的成员变量
    		shared_ptr<SyncedMemory> data_;      //前向传播数据
    		shared_ptr<SyncedMemory> diff_;      //反向传播梯度(偏差)数据
    		shared_ptr<SyncedMemory> shape_data_;   //blob的训练数据
    		vector<int> shape_;    //blob的训练数据的组织维度
    		int count_;      //blob中所有元素的个数,值为shape_中4个参数的乘积
    		int capacity_;  //blob的容积量
    
    		//禁用Blob类的拷贝和赋值操作
    		DISABLE_COPY_AND_ASSIGN(Blob);
    	};  // class Blob
    
    }  // namespace caffe
    
    #endif  // CAFFE_BLOB_HPP_
    

  • 相关阅读:
    (16)JavaScript的流程控制(js的循环)
    (15)javaScript入门
    (14)定位布局(子级在父级中自由定位 父级在页面中自由定位)
    (0-1)CSS 标签语法的属性
    ACM/ICPC 之 双向链表_构造列表-模拟祖玛 (TSH OJ-Zuma(祖玛))
    手记-数学分析(高等数学)中有关算法效率的公式列举(O,Θ,Ω)
    2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)
    整数划分问题-解法汇总(暂有DP-递归)
    2014北大研究生推免机试(校内)-垃圾炸弹(基础枚举)
    ACM/ICPC 之 BFS-广搜进阶-八数码(经典)(POJ1077+HDU1043)
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9411824.html
Copyright © 2011-2022 走看看