zoukankan      html  css  js  c++  java
  • 实战caffe多标签分类——汽车品牌与车辆外观(C++接口)[详细实现+数据集]

    前言

    很多地方我们都需要用到多标签分类,比如一张图片,上面有只蓝猫,另一张图片上面有一只黄狗,那么我们要识别的时候,就可以采用多标签分类这一思想了。任务一是识别出这个到底是猫还是狗?(类型)任务二是识别出这是蓝还是黄?(颜色)
    这里写图片描述
    这里写图片描述
    网上看了几篇教程,有讲的非常好的,也有出bug飞上了天的(吐槽啊喂!)这里还是主要讲讲这篇:http://chuansong.me/n/494753151240。我自己已经测试了,可行,给薛大牛一个赞!但是遗憾的是这篇文章的内容严重不足啊(连lmdb生成的命令行格式都没有,还是我自己看代码琢磨了一下…)我就给这篇文章补充补充,给一些例子。

    任务

    我这里给出一个具体的任务咯,要求在以下图片中,识别出汽车品牌和车辆外形。汽车品牌分为:Benz/BMW/Audi 车辆外形分为:Sedan/SUV。这是一个只有72张图片的小数据库,包括了测试和训练集:
    这里写图片描述
    其中标注是这样的,Audi=0,BMW=1,Benz=2. Sedan =0, SUV=1。所以如果这辆车是奥迪的SUV,标注就是: xx.jpg 0 1。在数据库中,标注已经做好了。数据集的下载方式在文章的最后。

    定义我们的网络结构

    我们这里采用的是上述文章中薛大牛的方法,两个data层,一个data只放图片,另一个data放label,label通过slice layer切开。然后我们开始定义网络!修改AlexNet!这是我的网络:

    name: "ZnNet"
    layer {
      name: "data"
      type: "Data"
      top: "data"  
      transform_param {
        mirror: true
        crop_size: 227
        mean_file: "models/bvlc_alexnet/ZnCarTrainMean.binaryproto"
      }
      include {
        phase: TRAIN
      }
      data_param {
        source: "models/bvlc_alexnet/ZnCarTrainImage" 
        batch_size: 10
        backend: LMDB
      }
    }
    layer {
      name: "labels"
      type: "Data"
      top: "labels"
      include {
        phase: TRAIN
      }
      data_param {
        source: "models/bvlc_alexnet/ZnCarTrainLabel"
        batch_size: 10
        backend: LMDB
      }
    }
    layer {
      name: "data"
      type: "Data"
      top: "data"
      transform_param {
         crop_size: 227    
         mean_file: "models/bvlc_alexnet/ZnCarTestMean.binaryproto"
      } 
      include {
        phase: TEST
      }
      data_param {
        source: "models/bvlc_alexnet/ZnCarTestImage"
        batch_size: 12
        backend: LMDB
       }
    }
    layer {
      name: "labels"
      type: "Data"
      top: "labels"
      include {
         phase: TEST
      }
      data_param {
        source: "models/bvlc_alexnet/ZnCarTestLabel"
        batch_size: 12
        backend: LMDB
      }
    }
    layer {
      name: "slice"
      type: "Slice"
      bottom: "labels"
      top: "type" #汽车品牌
      top: "surface" #车的外形
      slice_param {
        axis: 1
        slice_point: 1
      }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 96
        kernel_size: 11
        stride: 4
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "conv1"
      top: "conv1"
    }
    layer {
      name: "norm1"
      type: "LRN"
      bottom: "conv1"
      top: "norm1"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "norm1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "pool1"
      top: "conv2"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 2
        kernel_size: 5
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu2"
      type: "ReLU"
      bottom: "conv2"
      top: "conv2"
    }
    layer {
      name: "norm2"
      type: "LRN"
      bottom: "conv2"
      top: "norm2"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      bottom: "norm2"
      top: "pool2"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
        }
    }
    layer {
      name: "conv3"
      type: "Convolution"
      bottom: "pool2"
      top: "conv3"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "relu3"
      type: "ReLU"
      bottom: "conv3"
      top: "conv3"
    }
    layer {
      name: "conv4"
      type: "Convolution"
      bottom: "conv3"
      top: "conv4"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu4"
      type: "ReLU"
      bottom: "conv4"
      top: "conv4"
    }
    layer {
      name: "conv5"
      type: "Convolution"
      bottom: "conv4"
      top: "conv5"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu5"
      type: "ReLU"
      bottom: "conv5"
      top: "conv5"
    }
    layer {
      name: "pool5"
      type: "Pooling"
      bottom: "conv5"
      top: "pool5"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "fc6"
      type: "InnerProduct"
      bottom: "pool5"
      top: "fc6"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
        weight_filler {
          type: "gaussian"
          std: 0.005
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu6"
      type: "ReLU"
      bottom: "fc6"
      top: "fc6"
    }
    layer {
      name: "drop6"
      type: "Dropout"
      bottom: "fc6"
      top: "fc6"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc7"
      type: "InnerProduct"
      bottom: "fc6"
      top: "fc7"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
        weight_filler {
          type: "gaussian"
          std: 0.005
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu7"
      type: "ReLU"
      bottom: "fc7"
      top: "fc7"
    }
    layer {
      name: "drop7"
      type: "Dropout"
      bottom: "fc7"
      top: "fc7"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc8_type"
      type: "InnerProduct"
      bottom: "fc7"
      top: "fc8_type"
      param {
        lr_mult: 5
        decay_mult: 5
      }
      param {
        lr_mult: 10
        decay_mult: 0
      }
      inner_product_param {
        num_output: 3
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "fc8_surface"
      type: "InnerProduct"
      bottom: "fc7"
      top: "fc8_surface"
      param {
        lr_mult: 5
        decay_mult: 5
      }
      param {
        lr_mult: 10
        decay_mult: 0
      }
      inner_product_param {
        num_output: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "accuracy_type"
      type: "Accuracy"
      bottom: "fc8_type"
      bottom: "type"
      top: "accuracy_type"
      include {
        phase: TEST
      }
    }
    layer {
      name: "loss_type"
      type: "SoftmaxWithLoss"
      bottom: "fc8_type"
      bottom: "type"
      top: "loss_type"
      loss_weight:0.5
    }
    layer {
      name: "accuracy_surface"
      type: "Accuracy"
      bottom: "fc8_surface"
      bottom: "surface"
      top: "accuracy_surface"
      include {
        phase: TEST
      }
    }
    layer {
      name: "loss_surface"
      type: "SoftmaxWithLoss"
      bottom: "fc8_surface"
      bottom: "surface"
      top: "loss_surface"
      loss_weight:0.5
    }

    loss_weight是指的这一层的loss对整个网络反向传播时的贡献。我们这里两个loss,先各自设定0.5。在这里推荐大家一个网站:http://ethereon.github.io/netscope/#/editor输入自己的网络定义文件,输出直观的网络图。这样一来,我们就可以很直观的看啦:
    这里写图片描述
    label被slice分成了两个层,各自对应相关的loss。(看起来还是很合理的对吧?)

    做数据转换工具!

    整个网络结构需要两类数据,一类是纯图片的lmdb,一类是包含两个标签的lmdb。首先我们需要修改caffe中的源码(相信我,很简单!)打开你编译caffe时候的工程,找到convert_imageset这个工程:
    这里写图片描述
    修改convert_imageset.cpp为convert_multilabel.cpp,内容如下,全部替代也可以:(见github:https://github.com/HolidayXue/CodeSnap/blob/master/convert_multilabel.cpp)然后重新编译这个convert_imageset这个project。你可能会遇到什么没有生成object的警告,在这里关掉即可:
    这里写图片描述
    完成后,我们会看到release文件夹下多了一个convert_multilabel的exe,这个就是我们的lmdb生成工具啦。

    做图像和多标签数据!

    下载我的(或者自己做也可以)数据集,用命令行命令:

    convert_multilabel.exe  --resize_height=227  --resize_width=227 ZnCarTrain/ ZnCarTrain/Label.txt ZnCarTrainImage ZnCarTrainLabel 2

    几个参数我解释一下。–resize_height=227 –resize_width=227 代表将图像缩放到227*227,ZnCar/是目录,ZnCarTrain/Label.txt是你的标注所在的地方,ZnCarTrainImage和ZnCarTrainLabel是要生成的lmdb文件夹,最后一个2代表着你这里有两类标签。(如果有更多标签需要分类的话,这里要改,slice layer和前面的loss都需要改哦~)
    然后还要做均值文件:

    compute_image_mean.exe convert_data_train image_mean.binaryproto
    pause

    总之最后应该有六个东西,如图:
    这里写图片描述
    数据制作完毕。

    微调AlexNet!

    网上下载一个bvlc_alexnet.caffemodel的权重文件。然后就是finetune了,参数的话得好好改改solver.prototxt里面,比如base_lr调小一点啦,迭代max_iter不要太多啦等等。此外也可以把两个fc8层的学习率适当提升一些,因为在finetune的时候训练好的权重只对原来没变的层有作用,这个新层就相当于是随机初始化的参数。
    我这是用cpu训练的,很慢。(早知道就把显卡带回来了):
    这里写图片描述

    试一试我们的模型

    我们做一个deploy文件:

    name: "ZnNet"
    layer {
      name: "data"
      type: "Input"
      top: "data"
      input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 96
        kernel_size: 11
        stride: 4
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "conv1"
      top: "conv1"
    }
    layer {
      name: "norm1"
      type: "LRN"
      bottom: "conv1"
      top: "norm1"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "norm1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "pool1"
      top: "conv2"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 2
        kernel_size: 5
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu2"
      type: "ReLU"
      bottom: "conv2"
      top: "conv2"
    }
    layer {
      name: "norm2"
      type: "LRN"
      bottom: "conv2"
      top: "norm2"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      bottom: "norm2"
      top: "pool2"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
        }
    }
    layer {
      name: "conv3"
      type: "Convolution"
      bottom: "pool2"
      top: "conv3"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "relu3"
      type: "ReLU"
      bottom: "conv3"
      top: "conv3"
    }
    layer {
      name: "conv4"
      type: "Convolution"
      bottom: "conv3"
      top: "conv4"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu4"
      type: "ReLU"
      bottom: "conv4"
      top: "conv4"
    }
    layer {
      name: "conv5"
      type: "Convolution"
      bottom: "conv4"
      top: "conv5"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        group: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu5"
      type: "ReLU"
      bottom: "conv5"
      top: "conv5"
    }
    layer {
      name: "pool5"
      type: "Pooling"
      bottom: "conv5"
      top: "pool5"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "fc6"
      type: "InnerProduct"
      bottom: "pool5"
      top: "fc6"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
        weight_filler {
          type: "gaussian"
          std: 0.005
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu6"
      type: "ReLU"
      bottom: "fc6"
      top: "fc6"
    }
    layer {
      name: "drop6"
      type: "Dropout"
      bottom: "fc6"
      top: "fc6"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc7"
      type: "InnerProduct"
      bottom: "fc6"
      top: "fc7"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
        weight_filler {
          type: "gaussian"
          std: 0.005
        }
        bias_filler {
          type: "constant"
          value: 0.1
        }
      }
    }
    layer {
      name: "relu7"
      type: "ReLU"
      bottom: "fc7"
      top: "fc7"
    }
    layer {
      name: "drop7"
      type: "Dropout"
      bottom: "fc7"
      top: "fc7"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc8_type"
      type: "InnerProduct"
      bottom: "fc7"
      top: "fc8_type"
      param {
        lr_mult: 5
        decay_mult: 5
      }
      param {
        lr_mult: 10
        decay_mult: 0
      }
      inner_product_param {
        num_output: 3
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "fc8_surface"
      type: "InnerProduct"
      bottom: "fc7"
      top: "fc8_surface"
      param {
        lr_mult: 5
        decay_mult: 5
      }
      param {
        lr_mult: 10
        decay_mult: 0
      }
      inner_product_param {
        num_output: 2
        weight_filler {
          type: "gaussian"
          std: 0.01
        }
        bias_filler {
          type: "constant"
          value: 0
        }
      }
    }
    layer {
      name: "prob_type"
      type: "Softmax"
      bottom: "fc8_type"
      top: "prob_type"
      loss_weight:0.5
    }
    layer {
      name: "prob_surface"
      type: "Softmax"
      bottom: "fc8_surface"
      top: "prob_surface"
      loss_weight:0.5
    }
    

    然后这里还需要修改classification.cpp文件,因为Caffe自带的只支持单样本。我自己做了一个修改版本的,主要是修改了命令行和输出网络的部分,这个cpp只支持两标签,主要是用着方便,如果你需要更多的标签可以自己修改。编译步骤同convert_multilabel.cpp的编译。底下的代码直接就可以替换原来的cpp。
    convert_multilabel.cpp:

    #include <caffe/caffe.hpp>
    #ifdef USE_OPENCV
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #endif  // USE_OPENCV
    #include <algorithm>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>
    
    #ifdef USE_OPENCV
    using namespace caffe;  // NOLINT(build/namespaces)
    using std::string;
    
    /* Pair (label, confidence) representing a prediction. */
    // change: 2 classify — (label1, confidence1) (label2, confidence2)
    typedef std::pair<string, float> Prediction;
    class Classifier {
     public:
      Classifier(const string& model_file,
                 const string& trained_file,
                 const string& mean_file,
                 const vector<string>& label_files);
    
      std::vector<vector<Prediction>> Classify(const cv::Mat& img, int N = 5);
    
     private:
      void SetMean(const string& mean_file);
    
      std::vector<vector<float>> Predict(const cv::Mat& img);
    
      void WrapInputLayer(std::vector<cv::Mat>* input_channels);
    
      void Preprocess(const cv::Mat& img,
                      std::vector<cv::Mat>* input_channels);
    
     private:
      shared_ptr<Net<float> > net_;
      cv::Size input_geometry_;
      int num_channels_;
      cv::Mat mean_;
      std::vector<vector<string>> labels_; //multi
    };
    
    Classifier::Classifier(const string& model_file,
                           const string& trained_file,
                           const string& mean_file,
                           const vector<string>& label_file) {
    #ifdef CPU_ONLY
      Caffe::set_mode(Caffe::CPU);
    #else
      Caffe::set_mode(Caffe::GPU);
    #endif
    
      /* Load the network. */
      net_.reset(new Net<float>(model_file, TEST));
      net_->CopyTrainedLayersFrom(trained_file);
    
      CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
      //CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
    
      Blob<float>* input_layer = net_->input_blobs()[0];
      num_channels_ = input_layer->channels();
      CHECK(num_channels_ == 3 || num_channels_ == 1)
        << "Input layer should have 1 or 3 channels.";
      input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
    
      /* Load the binaryproto mean file. */
      SetMean(mean_file);
    
      /* Load labels. */
      //2 labels should read
      string line;
      for (int i = 0; i < label_file.size(); i++)
      {
          std::ifstream labels(label_file[i].c_str());
          CHECK(labels) << "Unable to open labels file " << label_file[i];
          vector<string> label_array;
          while (std::getline(labels, line))
          {
              label_array.push_back(line);
          }
          Blob<float>* output_layer = net_->output_blobs()[i];
          CHECK_EQ(label_array.size(), output_layer->channels())
              << "Number of labels is different from the output layer dimension.";
          labels_.push_back(label_array);
      }
    }
    
    static bool PairCompare(const std::pair<float, int>& lhs,
                            const std::pair<float, int>& rhs) {
      return lhs.first > rhs.first;
    }
    
    /* Return the indices of the top N values of vector v. */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
      std::vector<std::pair<float, int> > pairs;
      for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
      std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
    
      std::vector<int> result;
      for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
      return result;
    }
    
    /* Return the top N predictions. */
    std::vector<vector<Prediction>> Classifier::Classify(const cv::Mat& img, int N) {
      auto output = Predict(img);
      int N1 = std::min<int>(labels_[0].size(), N);
      int N2 = std::min<int>(labels_[1].size(), N);
      std::vector<int> maxN1 = Argmax(output[0], N1);
      std::vector<int> maxN2 = Argmax(output[1], N2);
      std::vector<Prediction> predictions1;
      std::vector<Prediction> predictions2;
    
      for (int i = 0; i < N1; ++i) {
        int idx = maxN1[i];
        predictions1.push_back(std::make_pair(labels_[0][idx], output[0][idx]));
      }
      for (int i = 0; i < N2; ++i) {
          int idx = maxN2[i];
          predictions2.push_back(std::make_pair(labels_[1][idx], output[1][idx]));
      }
      vector<vector<Prediction>> predictions;
      predictions.push_back(predictions1);
      predictions.push_back(predictions2);
      return predictions;
    }
    
    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
      BlobProto blob_proto;
      ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    
      /* Convert from BlobProto to Blob<float> */
      Blob<float> mean_blob;
      mean_blob.FromProto(blob_proto);
      CHECK_EQ(mean_blob.channels(), num_channels_)
        << "Number of channels of mean file doesn't match input layer.";
    
      /* The format of the mean file is planar 32-bit float BGR or grayscale. */
      std::vector<cv::Mat> channels;
      float* data = mean_blob.mutable_cpu_data();
      for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
      }
    
      /* Merge the separate channels into a single image. */
      cv::Mat mean;
      cv::merge(channels, mean);
    
      /* Compute the global mean pixel value and create a mean image
       * filled with this value. */
      cv::Scalar channel_mean = cv::mean(mean);
      mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }
    
    std::vector<vector<float>> Classifier::Predict(const cv::Mat& img) {
      Blob<float>* input_layer = net_->input_blobs()[0];
      input_layer->Reshape(1, num_channels_,
                           input_geometry_.height, input_geometry_.width);
      /* Forward dimension change to all layers. */
      net_->Reshape();
    
      std::vector<cv::Mat> input_channels;
      WrapInputLayer(&input_channels);
    
      Preprocess(img, &input_channels);
    
      net_->Forward();
    
      /* Copy the output layer to a std::vector */
      Blob<float>* output_layer1 = net_->output_blobs()[0];
      Blob<float>* output_layer2 = net_->output_blobs()[1];
      const float* begin1 = output_layer1->cpu_data();
      const float* end1 = begin1+ output_layer1->channels();
      const float* begin2 = output_layer2->cpu_data();
      const float* end2 = begin2 + output_layer2->channels();
    
      std::vector<float> prob1(begin1, end1);
      std::vector<float> prob2(begin2, end2);
      vector<vector<float>> prob_matrix;
      prob_matrix.push_back(prob1);
      prob_matrix.push_back(prob2);
      return prob_matrix;
    }
    
    /* Wrap the input layer of the network in separate cv::Mat objects
     * (one per channel). This way we save one memcpy operation and we
     * don't need to rely on cudaMemcpy2D. The last preprocessing
     * operation will write the separate channels directly to the input
     * layer. */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
      Blob<float>* input_layer = net_->input_blobs()[0];
    
      int width = input_layer->width();
      int height = input_layer->height();
      float* input_data = input_layer->mutable_cpu_data();
      for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
      }
    }
    
    void Classifier::Preprocess(const cv::Mat& img,
                                std::vector<cv::Mat>* input_channels) {
      /* Convert the input image to the input image format of the network. */
      cv::Mat sample;
      if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
      else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
      else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
      else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
      else
        sample = img;
    
      cv::Mat sample_resized;
      if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
      else
        sample_resized = sample;
    
      cv::Mat sample_float;
      if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
      else
        sample_resized.convertTo(sample_float, CV_32FC1);
    
      cv::Mat sample_normalized;
      cv::subtract(sample_float, mean_, sample_normalized);
    
      /* This operation will write the separate BGR planes directly to the
       * input layer of the network because it is wrapped by the cv::Mat
       * objects in input_channels. */
      cv::split(sample_normalized, *input_channels);
    
      CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
            == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
    }
    
    int main(int argc, char** argv) {
      if (argc != 7) {
        std::cerr << "Usage: " << argv[0]
                  << " deploy.prototxt network.caffemodel"
                  << " mean.binaryproto label1.txt label2.txt img.jpg" << std::endl;
        return 1;
      }
    
      ::google::InitGoogleLogging(argv[0]);
    
      string model_file   = argv[1];
      string trained_file = argv[2];
      string mean_file    = argv[3];
      string label_file1   = argv[4];
      string label_file2   = argv[5];
      vector<string> label_file;
      label_file.push_back(label_file1);
      label_file.push_back(label_file2);
      std::cout << "the labels' channel:"<<label_file.size() << std::endl;
      Classifier classifier(model_file, trained_file, mean_file, label_file);
    
      string file = argv[6];
    
      std::cout << "---------- Prediction for "
                << file << " ----------" << std::endl;
    
      cv::Mat img = cv::imread(file, -1);
      CHECK(!img.empty()) << "Unable to decode image " << file;
      auto predictions = classifier.Classify(img);
      std::cout << "have runed classifier.Classify" << std::endl;
      /* Print the top N predictions. */
    
      std::cout << "---------- Surface------------" << std::endl;
      for (size_t i = 0; i < predictions[0].size(); ++i) {
        Prediction p = predictions[0][i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - ""
                  << p.first << """ << std::endl;
      }
      std::cout << " ---------- Type------------" << std::endl;
      for (size_t i = 0; i < predictions[1].size(); ++i) {
          Prediction p = predictions[1][i];
          std::cout << std::fixed << std::setprecision(4) << p.second << " - ""
              << p.first << """ << std::endl;
      }
    }
    #else
    int main(int argc, char** argv) {
      LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
    }
    #endif  // USE_OPENCV
    

    结果

    写两个标注文件:

    label1.txt:
    Sedan
    SUV
    
    label2.txt:
    Audi
    BMW
    Benz

    我修改后的classification.exe 分类的命令行:

    classification.exe deploy.prototxt network.caffemodel mean.binaryproto label1.txt label2.txt img.jpg

    这里写图片描述
    这里写图片描述

    本项目的Github网址:https://github.com/ChenJoya/Caffe_MultiLabel_Classification
    数据集:http://download.csdn.net/detail/mr_curry/9742578
    求星星~~

  • 相关阅读:
    Node入门
    Java try-catch、throw和throws的几点想法
    SpringMVC的四种HandlerMapping
    枚举
    MyBatis表和实体关联
    MyBatis xml和dao层接口组合使用
    Spring Task 定时器
    (转)Spring定时任务的几种实现
    Struts2+Spring发送邮件
    Struts2文件上传
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412028.html
Copyright © 2011-2022 走看看