zoukankan      html  css  js  c++  java
  • 机器学习: TensorFlow with MLP 笑脸识别

    Tensor Flow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    这是谷歌开源的一个强大的做深度学习的软件库,提供了C++ 和 Python 接口,下面给出用Tensor Flow 建立MLP 网络做笑脸识别的一个简单用例。这个用例可以帮助我们熟悉如何利用tensorflow 建立MLP, 并且利用MLP做分类。

    我们用到的数据库是GENKI4K,这个数据库有4000张图像,首先做人脸检测与剪切,然后提取HOG特征。这个数据库有 4000 张图,我们建立一个含有两个隐含层的MLP, 激励函数用的是Relu, f(x)=max(0,x)

    我们将裁剪得到的人脸图像resize成64×64, 然后提取HOG 特征,基于默认的设置,得到HOG特征的维数是1764, 第一个隐含层我们设置300个节点,第二个隐含层我们设置100个节点,最后的输出是2个节点,分别表示笑或不笑。

    网络结构如下所示:

    input(1764)->hidden 1(300)->hidden 2(100)->output(2)

    import string, os, sys
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.io
    import random
    import tensorflow as tf
    
    # set the folder path
    dir_name = '/media/chi/New Volume/Dataset/GENKI4K/Feature_Data'
    print '----------- no sub dir'
    
    # set the file path
    files = os.listdir(dir_name)
    for f in files:
        print (dir_name + os.sep + f)
    
    file_path = dir_name + os.sep+files[14]
    
    # get the data
    dic_mat = scipy.io.loadmat(file_path)
    
    data_mat = dic_mat['Hog_Feat']
    
    print (dic_mat.keys())
    
    print (type(dic_mat))
    
    print ('feature: ',  data_mat.shape)
    
    # print data_mat.dtype
    file_path2 = dir_name + os.sep + files[15]
    
    # print file_path2
    dic_label = scipy.io.loadmat(file_path2)
    
    label_mat = dic_label['Label']
    file_path3 = dir_name + os.sep+files[16]
    print ('file 3 path: ', file_path3)
    dic_T = scipy.io.loadmat(file_path3)
    
    T = dic_T['T']
    T = T-1
    
    print (T.shape)
    
    label = label_mat.ravel()
    print (label.shape)
    label_y = np.zeros((4000, 2))
    label_y[:, 0] = label
    label_y[:, 1] = 1-label
    
    print (label_y.shape)
    T_ind=random.sample(range(0, 4000), 4000)
    
    # Parameters
    learning_rate = 0.005
    train_epoch=100
    batch_size = 40
    batch_num=4000/batch_size
    
    # Network Parameters
    n_hidden_1 = 300 # 1st layer number of features
    n_hidden_2 = 100 # 2nd layer number of features
    n_input = 1764 # data input 
    n_classes = 2 # total classes (2)
    drop_out = 0.5
    
    
    # tf Graph input
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    # Create some wrappers for simplicity
    # 定义MLP 函数
    def multilayer_perceptron(x, weights, biases, drop_out):
        # Hidden layer with RELU activation
        layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
        layer_1 = tf.nn.relu(layer_1)
        # Hidden layer with RELU activation
        layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
        layer_2 = tf.nn.relu(layer_2)
        # layer_2 = tf.nn.dropout(layer_2, drop_out)
    
        # Output layer with linear activation
        out_layer = tf.matmul(layer_2, weights['w_out']) + biases['b_out']
        return out_layer
    
    # Store layers weight & bias
    weights = {
        'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'w_out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
    }
    
    
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'b_out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    # Construct model
    pred = multilayer_perceptron(x, weights, biases, drop_out)
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Initialize the variables
    init = tf.initialize_all_variables()
    
    train_loss = np.zeros(train_epoch)
    train_acc = np.zeros(train_epoch)
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(0, train_epoch):
            for batch in range (0, batch_num):
                arr_3 = T_ind[ batch * batch_size : (batch + 1) * batch_size ]
                batch_x = data_mat[arr_3, :]
                batch_y = label_y[arr_3, :]
                # Run optimization op (backprop)
                sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
    
            # Calculate loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: data_mat,
                                                              y: label_y})
    
    
            train_loss[epoch] = loss
            train_acc[epoch] = acc
    
    
            print("Epoch: " + str(epoch+1) + ", Loss= " + 
                      "{:.3f}".format(loss) + ", Training Accuracy= " + 
                      "{:.3f}".format(acc))
    
    plt.subplot(211)
    plt.plot(train_loss, 'r')
    plt.xlabel("Epoch")
    plt.ylabel("Training loss")
    plt.grid(True)
    
    
    plt.subplot(212)
    plt.xlabel("Epoch")
    plt.ylabel('Training Accuracy')
    plt.ylim(0.0, 1)
    plt.plot(train_acc, 'r')
    plt.grid(True)
    
    plt.show()

    仿真结果: (这里只给出了整个 training set 的结果)

    这里写图片描述

  • 相关阅读:
    一种想法
    识别link_text
    识别name
    识别id
    文件的读写
    条件和循环
    网站测试-功能测试小结
    拷贝
    #团队博客作业1-小组成员介绍
    软件测试基础-Homework1
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412436.html
Copyright © 2011-2022 走看看