zoukankan      html  css  js  c++  java
  • 机器学习:DeepDreaming with TensorFlow (三)

    我们看到,利用TensorFlow 和训练好的Googlenet 可以生成多尺度的pattern,那些pattern看起来比起单一通道的pattern你要更好,但是有一个问题就是多尺度的pattern里高频分量太多,显得图像的噪点很多,为了解决这个问题,可以进一步的引入一个先验平滑函数,这样每次迭代的时候可以对图像进行模糊,去除高频分量,这样一般来说需要更多的迭代次数,另一种方式就是每次迭代中增强低频分量的梯度,这种技术被称为: 拉普拉斯金字塔分解,这里我们就要用到这种技术,我们称为:Laplacian Pyramid Gradient Normalization,利用LPGN,可以使生成的多尺度pattern图像更加平滑:

    Laplacian Pyramid Gradient Normalization

    # boilerplate code
    from __future__ import print_function
    import os
    from io import BytesIO
    import numpy as np
    from functools import partial
    import PIL.Image
    from IPython.display import clear_output, Image, display, HTML
    
    import tensorflow as tf
    
    # !wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip && unzip inception5h.zip
    
    model_fn = 'tensorflow_inception_graph.pb'
    
    # creating TensorFlow session and loading the model
    graph = tf.Graph()
    sess = tf.InteractiveSession(graph=graph)
    with tf.gfile.FastGFile(model_fn, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    t_input = tf.placeholder(np.float32, name='input') # define the input tensor
    imagenet_mean = 117.0
    t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
    tf.import_graph_def(graph_def, {'input':t_preprocessed})
    
    layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
    feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
    
    print('Number of layers', len(layers))
    print('Total number of feature channels:', sum(feature_nums))
    
    
    # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity
    # to have non-zero gradients for features with negative initial activations.
    layer = 'mixed4b_3x3_bottleneck_pre_relu'
    channel = 24      # picking some feature channel to visualize
    
    # start with a gray image with a little noise
    img_noise = np.random.uniform(size=(224,224,3)) + 100.0
    
    def showarray(a, fmt='jpeg'):
        a = np.uint8(np.clip(a, 0, 1)*255)
        f = BytesIO()
        PIL.Image.fromarray(a).save(f, fmt)
        display(Image(data=f.getvalue()))
    
    def visstd(a, s=0.1):
        # Normalize the image range for visualization
        return (a-a.mean())/max(a.std(), 1e-4)*s + 0.5
    
    def T(layer):
        # Helper for getting layer output tensor
        return graph.get_tensor_by_name("import/%s:0"%layer)
    
    def tffunc(*argtypes):
        # Helper that transforms TF-graph generating function into a regular one.
        # See "resize" function below.
        placeholders = list(map(tf.placeholder, argtypes))
        def wrap(f):
            out = f(*placeholders)
            def wrapper(*args, **kw):
                return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
            return wrapper
        return wrap
    
    # Helper function that uses TF to resize an image
    def resize(img, size):
        img = tf.expand_dims(img, 0)
        return tf.image.resize_bilinear(img, size)[0,:,:,:]
    resize = tffunc(np.float32, np.int32)(resize)
    
    def calc_grad_tiled(img, t_grad, tile_size=512):
        # Compute the value of tensor t_grad over the image in a tiled way.
        # Random shifts are applied to the image to blur tile boundaries over 
        # multiple iterations.
        sz = tile_size
        h, w = img.shape[:2]
        sx, sy = np.random.randint(sz, size=2)
        img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
        grad = np.zeros_like(img)
        for y in range(0, max(h-sz//2, sz),sz):
            for x in range(0, max(w-sz//2, sz),sz):
                sub = img_shift[y:y+sz,x:x+sz]
                g = sess.run(t_grad, {t_input:sub})
                grad[y:y+sz,x:x+sz] = g
        return np.roll(np.roll(grad, -sx, 1), -sy, 0)
    
    # Laplacian Pyramid Gradient Normalization
    
    k = np.float32([1,4,6,4,1])
    k = np.outer(k, k)
    k5x5 = k[:,:,None,None]/k.sum()*np.eye(3, dtype=np.float32)
    
    def lap_split(img):
        # Split the image into lo and hi frequency components
        with tf.name_scope('split'):
            lo = tf.nn.conv2d(img, k5x5, [1,2,2,1], 'SAME')
            lo2 = tf.nn.conv2d_transpose(lo, k5x5*4, tf.shape(img), [1,2,2,1])
            hi = img-lo2
        return lo, hi
    
    def lap_split_n(img, n):
        # Build Laplacian pyramid with n splits
        levels = []
        for i in range(n):
            img, hi = lap_split(img)
            levels.append(hi)
        levels.append(img)
        return levels[::-1]
    
    def lap_merge(levels):
        # Merge Laplacian pyramid
        img = levels[0]
        for hi in levels[1:]:
            with tf.name_scope('merge'):
                img = tf.nn.conv2d_transpose(img, k5x5*4, tf.shape(hi), [1,2,2,1]) + hi
        return img
    
    def normalize_std(img, eps=1e-10):
        # Normalize image by making its standard deviation = 1.0
        with tf.name_scope('normalize'):
            std = tf.sqrt(tf.reduce_mean(tf.square(img)))
            return img/tf.maximum(std, eps)
    
    def lap_normalize(img, scale_n=4):
        # Perform the Laplacian pyramid normalization
        img = tf.expand_dims(img,0)
        tlevels = lap_split_n(img, scale_n)
        tlevels = list(map(normalize_std, tlevels))
        out = lap_merge(tlevels)
        return out[0,:,:,:]
    
    
    def render_lapnorm(t_obj, img0=img_noise, visfunc=visstd,
                       iter_n=10, step=1.0, octave_n=3, octave_scale=1.4, lap_n=4):
        t_score = tf.reduce_mean(t_obj) # defining the optimization objective
        t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
        # build the laplacian normalization graph
        lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n))
    
        img = img0.copy()
        for octave in range(octave_n):
            if octave>0:
                hw = np.float32(img.shape[:2])*octave_scale
                img = resize(img, np.int32(hw))
            for i in range(iter_n):
                g = calc_grad_tiled(img, t_grad)
                g = lap_norm_func(g)
                img += g*step
                print('.', end = ' ')
            clear_output()
            showarray(visfunc(img))
    
    render_lapnorm(T(layer)[:,:,:,channel])
    # render_lapnorm(T(layer)[:,:,:,65])
    # render_lapnorm(T('mixed3b_1x1_pre_relu')[:,:,:,101])
    # render_lapnorm(T(layer)[:,:,:,65]+T(layer)[:,:,:,139], octave_n=4)
    

    生成的效果图如下所示:

    这里写图片描述

    这里写图片描述

    Deepdream

    最后,我们再来看看Deep dream的生成,

    def render_deepdream(t_obj, img0=img_noise,
                         iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
        t_score = tf.reduce_mean(t_obj) # defining the optimization objective
        t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
    
        # split the image into a number of octaves
        img = img0
        octaves = []
        for i in range(octave_n-1):
            hw = img.shape[:2]
            lo = resize(img, np.int32(np.float32(hw)/octave_scale))
            hi = img-resize(lo, hw)
            img = lo
            octaves.append(hi)
    
        # generate details octave by octave
        for octave in range(octave_n):
            if octave>0:
                hi = octaves[-octave]
                img = resize(img, hi.shape[:2])+hi
            for i in range(iter_n):
                g = calc_grad_tiled(img, t_grad)
                img += g*(step / (np.abs(g).mean()+1e-7))
                print('.',end = ' ')
            clear_output()
            showarray(img/255.0)
    
    img0 = PIL.Image.open('1.jpg')
    img0 = np.float32(img0)
    showarray(img0/255.0)
    
    # render_deepdream(T(layer)[:,:,:,139], img0)
    # render_deepdream(tf.square(T('mixed4c')), img0)

    原图如下所示:
    这里写图片描述

    生成的效果图如下所示:

    这里写图片描述

    这里写图片描述

    参考来源

    https://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb#multiscale

  • 相关阅读:
    primo驱动启动顺序
    Windows硬链接 软链接 符号链接 快捷方式
    关于多标签文件管理器
    WinHTTrack Website Copier使用说明
    关于极限精简版系统(RAMOS专用)的说明(FAQ)
    RAMOS (内存操作系统)-无忧百科(不断完善中)
    华为PAY公交卡建议开卡免费!
    SSD硬盘测速较低的原因备忘
    联想T470笔记本GPT改MBR分区
    MSDE2008安装备忘
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412438.html
Copyright © 2011-2022 走看看