zoukankan      html  css  js  c++  java
  • 机器学习: Tensor Flow with CNN 做表情识别

    我们利用 TensorFlow 构造 CNN 做表情识别,我们用的是FER-2013 这个数据库, 这个数据库一共有 35887 张人脸图像,这里只是做一个简单到仿真实验,为了计算方便,我们用其中到 30000张图像做训练,5000张图像做测试集,我们建立一个3个convolution layer 以及 3个 pooling layer 和一个 FC layer 的CNN 来做训练。

    FER-2013 提供的是数据包括图像与label都存储在 .csv文件中,我们可以从 .csv文件里提取我们需要的数据,

    FER 2013 的数据集可以在我共享的资源网站上下载:

    http://download.csdn.net/user/shinian1987

    网络结构如下所示:
    input -> conv 1 -> pool 1 -> conv 2 -> pool 2 -> conv 3 -> pool 3 -> fc 1 -> out
    input -> 48×48
    conv 1 -> filter size: 3×3, “SAME” padding, output: 48×48
    pool 1 -> filter size: 2×2, output: 24×24
    conv 2 -> filter size: 3×3, “SAME” padding output: 24×24
    pool 2 -> filter size: 2×2, output: 12×12
    conv 3 -> filter size: 3×3, “SAME” padding output: 12×12
    pool 3 -> filter size: 2×2, output: 6×6
    fc 1 -> hidden nodes: 200, output: 1×100
    out -> 1×2

    import string, os, sys
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.io
    import random
    import tensorflow as tf
    
    dir_name = '/media/chi/New Volume/Dataset/FER2013/Original Data'
    print '----------- no sub dir'
    print ('The folder path: ', dir_name)
    
    files = os.listdir(dir_name)
    for f in files:
        print (dir_name + os.sep + f)
    
    
    file_path = dir_name + os.sep+files[2]
    
    print file_path
    
    data = pd.read_csv(file_path, dtype='a')
    
    label = np.array(data['emotion'])
    img_data = np.array(data['pixels'])
    
    N_sample = label.size
    # print label.size
    
    Face_data = np.zeros((N_sample, 48*48))
    Face_label = np.zeros((N_sample, 7), dtype=int)
    
    for i in range(N_sample):
        x = img_data[i]
        x = np.fromstring(x, dtype=float, sep=' ')
        x_max = x.max()
        x = x/(x_max+0.0001)
    #    print x_max
    #    print x
        Face_data[i] = x
        Face_label[i, label[i]] = 1
    #    img_x = np.reshape(x, (48, 48))
    #    plt.subplot(10,10,i+1)
    #    plt.axis('off')
    #    plt.imshow(img_x, plt.cm.gray)
    
    
    train_num = 30000
    test_num = 5000
    
    train_x = Face_data [0:train_num, :]
    train_y = Face_label [0:train_num, :]
    
    test_x =Face_data [train_num : train_num+test_num, :]
    test_y = Face_label [train_num : train_num+test_num, :]
    
    print ("All is well")
    
    batch_size = 50
    train_batch_num = train_num/batch_size
    test_batch_num = test_num/batch_size
    train_epoch = 100
    
    learning_rate = 0.001
    # Network Parameters
    n_input = 2304  # data input (img shape: 48*48)
    n_classes = 7   # total classes
    dropout = 0.5   # Dropout, probability to keep units
    
    # tf Graph input
    
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
    
    # Create some wrappers for simplicity
    
    def conv2d(x, W, b, strides=1):
        # Conv2D wrapper, with bias and relu activation
        x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
        x = tf.nn.bias_add(x, b)
        return tf.nn.relu(x)
    
    def maxpool2d(x, k=2):
        # MaxPool2D wrapper
        return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                              padding='VALID')
    
    # Create model
    def conv_net(x, weights, biases, dropout):
        # Reshape input picture
        x = tf.reshape(x, shape=[-1, 48, 48, 1])
    
        # Convolution Layer
        conv1 = conv2d(x, weights['wc1'], biases['bc1'])
        # Max Pooling (down-sampling)
        conv1 = maxpool2d(conv1, k=2)
    
        # Convolution Layer
        conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
        # Max Pooling (down-sampling)
        conv2 = maxpool2d(conv2, k=2)
    
        # Convolution Layer
        conv3 = conv2d(conv2, weights['wc3'], biases['bc3'])
        # Max Pooling (down-sampling)
        conv3 = maxpool2d(conv3, k=2)
    
        # Fully connected layer
        # Reshape conv2 output to fit fully connected layer input
        fc1 = tf.reshape(conv3, [-1, weights['wd1'].get_shape().as_list()[0]])
        fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
        fc1 = tf.nn.relu(fc1)
    
        # Apply Dropout
        fc1 = tf.nn.dropout(fc1, dropout)
    
        # Output, class prediction
        out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    
        return out
    
    # Store layers weight & bias
    weights = {
        # 3x3 conv, 1 input, 128 outputs
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 128])),
        # 3x3 conv, 128 inputs, 64 outputs
        'wc2': tf.Variable(tf.random_normal([3, 3, 128, 64])),
        # 3x3 conv, 64 inputs, 32 outputs
        'wc3': tf.Variable(tf.random_normal([3, 3, 64, 32])),
        # fully connected,
        'wd1': tf.Variable(tf.random_normal([6*6*32, 200])),
        # 1024 inputs, 10 outputs (class prediction)
        'out': tf.Variable(tf.random_normal([200, n_classes]))
    }
    
    
    biases = {
        'bc1': tf.Variable(tf.random_normal([128])),
    
        'bc2': tf.Variable(tf.random_normal([64])),
    
        'bc3': tf.Variable(tf.random_normal([32])),
    
        'bd1': tf.Variable(tf.random_normal([200])),
    
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    # Construct model
    pred = conv_net(x, weights, biases, keep_prob)
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    Train_ind = np.arange(train_num)
    Test_ind = np.arange(test_num)
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(0, train_epoch):
    
            Total_test_loss = 0
            Total_test_acc = 0
    
            for train_batch in range (0, train_batch_num):
                sample_ind = Train_ind[train_batch * batch_size:(train_batch + 1) * batch_size]
                batch_x = train_x[sample_ind, :]
                batch_y = train_y[sample_ind, :]
                # Run optimization op (backprop)
                sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                               keep_prob: dropout})
    
                if train_batch % batch_size == 0:
                    # Calculate loss and accuracy
                    loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                                  y: batch_y,
                                                                  keep_prob: 1.})
    
                    print("Epoch: " + str(epoch+1) + ", Batch: "+ str(train_batch) + ", Loss= " + 
                                "{:.3f}".format(loss) + ", Training Accuracy= " + 
                                "{:.3f}".format(acc))
    
            # Calculate test loss and test accuracy
            for test_batch in range (0, test_batch_num):
                sample_ind = Test_ind[test_batch * batch_size:(test_batch + 1) * batch_size]
                batch_x = test_x[sample_ind, :]
                batch_y = test_y[sample_ind, :]
                test_loss, test_acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                                            y: batch_y,
                                                                            keep_prob: 1.})
                Total_test_lost = Total_test_loss + test_loss
                Total_test_acc =Total_test_acc + test_acc
    
    
    
            Total_test_acc = Total_test_acc/test_batch_num
            Total_test_loss =Total_test_lost/test_batch_num
    
            print("Epoch: " + str(epoch + 1) + ", Test Loss= " + 
                          "{:.3f}".format(Total_test_loss) + ", Test Accuracy= " + 
                          "{:.3f}".format(Total_test_acc))
    
    plt.subplot(2,1,1)
    plt.ylabel('Test loss')
    plt.plot(Total_test_loss, 'r')
    plt.subplot(2,1,2)
    plt.ylabel('Test Accuracy')
    plt.plot(Total_test_acc, 'r')
    
    
    print "All is well"
    plt.show()
    
    

    数据库的样图:

    这里写图片描述

    100个训练周期的仿真结果:

    这里写图片描述

  • 相关阅读:
    10/28总结
    10/27总结
    10/26总结
    10/25总结
    10/24总结
    毕业设计第二周整理规划
    毕业设计第一周第五天完成情况汇总
    毕业设计第一周第四天完成情况汇总
    毕业设计第一周第三天完成情况汇总
    毕业设计第一周第二天完成情况汇总
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412447.html
Copyright © 2011-2022 走看看