zoukankan      html  css  js  c++  java
  • tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)

    tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api:

    • tf.nn.moments(x, axes, name=None, keep_dims=False) ⇒ mean, variance:
      • 统计矩,mean 是一阶矩,variance 则是二阶中心矩
    • tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None)
      • tf.nn.batch_norm_with_global_normalization(t, m, v, beta, gamma, variance_epsilon, scale_after_normalization, name=None)
      • 由函数接口可知,tf.nn.moments 计算返回的 mean 和 variance 作为 tf.nn.batch_normalization 参数进一步调用;

    1. tf.nn.moments,矩

    tf.nn.moments 返回的 mean 表示一阶矩,variance 则是二阶中心矩;

    如我们需计算的 tensor 的 shape 为一个四元组 [batch_size, height, width, kernels],一个示例程序如下:

    import tensorflow as tf
    shape = [128, 32, 32, 64]
    a = tf.Variable(tf.random_normal(shape))        # a:activations
    axis = list(range(len(shape)-1))                # len(x.get_shape())
    a_mean, a_var = tf.nn.moments(a, axis)

    这里我们仅给出 a_mean, a_var 的维度信息,

    sess = tf.Session()
    sess.run(tf.global_variables_initalizer())
    
    sess.run(a_mean).shape      # (64, )    
    sess.run(a_var).shape       # (64, )    ⇒ 也即是以 kernels 为单位,batch 中的全部样本的均值与方差

    references

  • 相关阅读:
    数字精确运算BigDecimal经常用法
    C3P0数据库连接池使用
    Theano学习笔记(四)——导数
    Leetcode--Merge Intervals
    1191 数轴染色
    P1021 邮票面值设计
    P1032 字串变换
    P1294 高手去散步
    P1832 A+B Problem(再升级)
    P1332 血色先锋队
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9421624.html
Copyright © 2011-2022 走看看