zoukankan      html  css  js  c++  java
  • 图像处理与计算机视觉的 topics


    这里写图片描述

    • 光学图像(optical image):
      • the apparent reproduction of an object, formed by a lens or mirror system from reflected, refracted, or diffracted light waves. There are two kinds of images, real and virtual.
        • In a real image the light rays actually are brought to a focus at the image position, and the real image may be made visible on a screen—e.g., a sheet of paper—whereas a virtual image cannot. Examples of real images are those made by a camera lens on film or a projection lens on a motion-picture screen.
        • Virtual images are made by rays that do not actually come from where the image seems to be; e.g., the virtual image in a plane mirror is at some distance behind the mirror.

    0. 三大分类



    • computer vision:图像;
    • audio:声音;
    • Text:文本数据;

    1. image

    • 二值图像,灰度图像,彩色图像
    • natural images,Face images,synthetical images,SAR images,medical images

    对于单幅图像处理问题:

    • denoising
    • super-resolution
    • inpainting:重绘,重绘丢失的数据;
    • image segmentation:

    多幅图像处理问题:

    • object tracking
    • object detection
    • Anomaly Detection

    2. video

    3. 目标分割,目标识别,目标检测,目标跟踪

    • 目标分割(Target Segmentation):应该是data/image segmentation的一种;

      这里假定数据是图像,就如楼上说的,任务是把目标对应的部分分割出来。对于一般的光学图像而言,分割像素是一个比较常见的目标,就是要提取哪一些像素是用于表述已知目标的。这种Segmentation可以是一个分类(classificatio)问题,就是把每一个pixel做labeling,提出感兴趣的那一类label的像素。也可以是clustering的问题,即是不知道label,但需要满足一些optimality,比如要cluster之间的correlation最小之类的。


      这里写图片描述

    • 目标识别(Target Recognition),这是一个基于分类(Classification)的识别(Recognition)问题,即是在所有的给定数据中,分类出哪一些 sample 是目标,哪一些不是。

      还是拿图片作为数据举例,这个分类的层面往往不是pixel,给定的一些segment,或者定义的对象(Object),或者图片本身。


      这里写图片描述

    • 目标检测(Target Detection),最早的detection system应该是搞雷达的人首先提出并且heavily study的,最简单的任务就是从看似随机(random)又充满干扰(interference)和噪音(noise)的信号中,抓取到有信息的特征(information-bearing pattern)。


      这里写图片描述

    • 目标追踪(Target Tracking),这个任务很重要的第一点是目标定位(Target Locating),而且这个任务设计到的数据一般具有时间序列(Temporal Data)。常见的情况是首先 Target 被 Identify 以后,算法或者系统需要在接下来时序的数据中,快速并高效地对给定目标进行再定位。任务需要区别类似目标,需要避免不要的重复计算,充分利用好时序相关性(Temporal Correlation),并且需要对一些简单的变化Robust,必须旋转,遮盖,缩小放大,Motion Blur 之类的线性或者非线性变化。
      下面是一个Target Detection的栗子:

  • 相关阅读:
    Linux基本权限管理
    Spring JMS
    消息中间件 ActiveMQ的简单使用
    Ionic slides 轮播图
    Spring 3 MVC and XML example
    Java 数组
    Java String类
    Java static 使用
    http://blog.csdn.net/huang_xw/article/details/7090173
    http://blog.chinaunix.net/uid-20577907-id-3519578.html
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9422985.html
Copyright © 2011-2022 走看看