题目来自于:https://leetcode.com/problems/unique-paths/
:https://leetcode.com/problems/unique-paths-ii/
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。
典型的解法记住空间复杂度要在O(n)
class Solution { public: int uniquePaths(int m, int n) { vector<int> paths(n,1); for(int i=1;i<m;i++) for(int j=1;j<n;j++) paths[j]+=paths[j-1]; return paths[n-1]; } };
另外一种是採用排列组合的方法来解答的
我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的
这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,
class Solution { public: int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!) int large = max(m,n) -1; int small = min(m,n) -1; if (large == 0 || small == 0) return 1; long int numerator = 1, denominator = 1; for (int i=1; i<=small; ++i){ numerator *= large + i; denominator *= i; } return numerator/denominator; } };
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
这里仅仅是加了障碍物而已。在障碍物的位子是0,
还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;
class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { vector<int> paths(obstacleGrid[0].size(),0); paths[0]=!obstacleGrid[0][0]; for(int i=0;i<obstacleGrid.size();++i) for(int j=0;j<obstacleGrid[0].size();++j) if(obstacleGrid[i][j]==1) paths[j]=0; else if(j-1>=0) paths[j]+=paths[j-1]; return paths[obstacleGrid[0].size()-1]; } };