题目大意
有n座小岛,当中每一个岛都有若干帝企鹅。一開始岛与岛之间互不相连。有m个操作。各自是在两个岛之间修一座双向桥,若两岛已连通则不修并输出no,若不连通就输出yes并修建。改动一个岛上帝企鹅的数量;询问从岛A到岛B可看到多少帝企鹅,若到不了输出impossible。
题解
继续试水LCT。LCT维护每一个点自身的企鹅数以及其在Splay下的子树的企鹅数的总和。修桥操作要在LCT中询问是否有同样的根,没有则添边。改动时把要被改动的点弄到树根去,直接改动就可以。查询时要先推断是否为同一结点,再推断是否连通。若连通,则把当中一个点x弄到根上,还有一个点y用access连上去,再用Splay把y弄到辅助树的根上。
这时x一定是y最左端的子孙(由于它是根。中序序列里最靠前)。直接输出y左子树企鹅的总和加上y自己的企鹅数就可以。
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#define maxn 30005
using namespace std;
int n, m;
struct node *nil, *T[maxn], *S[maxn];
struct node
{
bool rev;
int val, s;
node *fa, *lc, *rc;
node(bool rev = false, int val = 0, int s = 0, node *fa = nil, node *lc = nil, node *rc = nil)
: rev(rev), val(val), s(s), fa(fa), lc(lc), rc(rc) {}
inline void update()
{
s = lc -> s + rc -> s + val;
}
inline void rever()
{
rev ^= 1;
swap(lc, rc);
}
inline void pushdown()
{
if(rev)
{
rev = false;
lc -> rever(); rc -> rever();
}
}
};
inline void zig(node *x)
{
node *y = x -> fa;
y -> lc = x -> rc;
x -> rc -> fa = y;
x -> rc = y;
x -> fa = y -> fa;
if(y == y -> fa -> lc) y -> fa -> lc = x;
else if(y == y -> fa -> rc) y -> fa -> rc = x;
y -> fa = x;
y -> update();
}
inline void zag(node *x)
{
node *y = x -> fa;
y -> rc = x -> lc;
x -> lc -> fa = y;
x -> lc = y;
x -> fa = y -> fa;
if(y == y -> fa -> lc) y -> fa -> lc = x;
else if(y == y -> fa -> rc) y -> fa -> rc = x;
y -> fa = x;
y -> update();
}
void splay(node *x)
{
int top = 0;
S[top++] = x;
for(node *i = x; i == i -> fa -> lc || i == i -> fa -> rc; i = i -> fa)
{
S[top++] = i -> fa;
}
while(top--) S[top] -> pushdown();
node *y = nil, *z = nil;
while(x == x -> fa -> lc || x == x -> fa -> rc)
{
y = x -> fa; z = y -> fa;
if(x == y -> lc)
{
if(y == z -> lc) zig(y);
zig(x);
}
else
{
if(y == z -> rc) zag(y);
zag(x);
}
}
x -> update();
}
inline void access(node *x)
{
for(node *y = nil; x != nil; y = x, x = x -> fa)
{
splay(x);
x -> rc = y;
x -> update();
}
}
inline void makeroot(node *x)
{
access(x); splay(x); x -> rever();
}
inline void lnk(node *x, node *y)
{
makeroot(x);
x -> fa = y;
splay(y);
}
inline node* find(node *x)
{
access(x); splay(x);
while(x -> lc != nil) x = x -> lc;
return x;
}
inline void change(node *x, int k)
{
makeroot(x);
x -> val = k;
x -> update();
}
inline int query(node *x, node *y)
{
if(x == y) return x -> val;
if(find(x) != find(y)) return -1;
makeroot(x);
access(y);
splay(y);
return (y -> lc -> s + y -> val);
}
int main()
{
int a, b, c;
char ch[10];
scanf("%d", &n);
nil = new node(); *nil = node();
for(int i = 1; i <= n; ++i) T[i] = new node();
for(int i = 1; i <= n; ++i)
{
scanf("%d", &(T[i] -> val));
T[i] -> update();
}
scanf("%d", &m);
while(m--)
{
scanf("%s%d%d", ch, &a, &b);
if(ch[0] == 'b')
{
if(find(T[a]) != find(T[b]))
{
lnk(T[a], T[b]); puts("yes");
}
else puts("no");
}
else if(ch[0] == 'p')
{
change(T[a], b);
}
else
{
c = query(T[a], T[b]);
if(c == -1) puts("impossible");
else printf("%d
", c);
}
}
for(int i = 1; i <= n; ++i)
{
delete T[i];
T[i] = NULL;
}
delete nil;
nil = NULL;
return 0;
}