zoukankan      html  css  js  c++  java
  • POJ训练计划3422_Kaka's Matrix Travels(网络流/费用流)

    解题报告

    题目传送门

    题意:

    从n×n的矩阵的左上角走到右下角,每次仅仅能向右和向下走,走到一个格子上加上格子的数,能够走k次。问最大的和是多少。

    思路:

    建图:每一个格子掰成两个点,分别叫“出点”,“入点”,
    入点到出点间连一个容量1。费用为格子数的边。以及一个容量∞,费用0的边。
    同一时候。一个格子的“出点”向它右、下的格子的“入点”连边。容量∞,费用0。
    源点向(0,0)的入点连一个容量K的边。(N-1,N-1)的出点向汇点连一个容量inf的边。
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <queue>
    #define inf 0x3f3f3f3f
    using namespace std;
    struct node {
        int v,cost,cap,next;
    } edge[101000];
    int head[10000],dis[10000],pre[10000],vis[10000],f[10000],mmap[100][100],cnt,s,t,n,m,k,flow,cost;
    void add(int u,int v,int cost,int cap) {
        edge[cnt].v=v;
        edge[cnt].cost=cost;
        edge[cnt].cap=cap;
        edge[cnt].next=head[u];
        head[u]=cnt++;
        edge[cnt].v=u;
        edge[cnt].cost=-cost;
        edge[cnt].cap=0;
        edge[cnt].next=head[v];
        head[v]=cnt++;
    }
    int _spfa() {
        for(int i=s; i<=t; i++) {
            dis[i]=-1;
            pre[i]=f[i]=vis[i]=0;
        }
        dis[s]=0;
        f[s]=inf;
        pre[s]=-1;
        vis[s]=1;
        queue<int>Q;
        Q.push(s);
        while(!Q.empty()) {
            int u=Q.front();
            Q.pop();
            vis[u]=0;
            for(int i=head[u]; i!=-1; i=edge[i].next) {
                int v=edge[i].v;
                if(edge[i].cap&&dis[v]<dis[u]+edge[i].cost) {
                    dis[v]=dis[u]+edge[i].cost;
                    f[v]=min(f[u],edge[i].cap);
                    pre[v]=i;
                    if(!vis[v]) {
                        vis[v]=1;
                        Q.push(v);
                    }
                }
            }
        }
        if(dis[t]==-1)return 0;
        cost+=dis[t];
        flow+=f[t];
        for(int i=pre[t]; i!=-1; i=pre[edge[i^1].v]) {
            edge[i].cap-=f[t];
            edge[i^1].cap+=f[t];
        }
        return 1;
    }
    void mcmf() {
        cost=flow=0;
        while(_spfa());
        printf("%d
    ",cost);
    }
    int dx[]= {0,1};
    int dy[]= {1,0};
    int main() {
        int i,j;
        scanf("%d%d",&n,&k);
        memset(head,-1,sizeof(head));
        cnt=0;
        m=n*n;
        s=0;
        t=2*m+1;
        for(i=0; i<n; i++) {
            for(j=0; j<n; j++) {
                scanf("%d",&mmap[i][j]);
            }
        }
        add(s,1,0,k);
        for(i=0; i<n; i++) {
            for(j=0; j<n; j++) {
                add(i*n+j+1,m+i*n+j+1,mmap[i][j],1);
                add(i*n+j+1,m+i*n+j+1,0,inf);
                for(int l=0; l<2; l++) {
                    int x=i+dx[l];
                    int y=j+dy[l];
                    if(x>=0&&x<n&&y>=0&&y<n) {
                        add(m+i*n+j+1,x*n+y+1,0,inf);
                    }
                }
            }
        }
        add(2*m,t,0,inf);
        mcmf();
        return 0;
    }


    Kaka's Matrix Travels
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7807   Accepted: 3140

    Description

    On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

    Input

    The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

    Output

    The maximum SUM Kaka can obtain after his Kth travel.

    Sample Input

    3 2
    1 2 3
    0 2 1
    1 4 2
    

    Sample Output

    15

  • 相关阅读:
    数据库的架构和优化
    描述一个高性能高可靠的网站架构——如何设计一个秒杀系统
    PHP手册-函数参考-加密扩展
    系统性能指标总结
    PHP实现负载均衡的加权轮询
    PHP生成二维码
    高性能网站架构
    PHP实现Redis的数据结构和LFU/LRU
    缓存的设计及PHP实现LFU
    网络开发库从libuv说到epoll
  • 原文地址:https://www.cnblogs.com/mthoutai/p/7079128.html
Copyright © 2011-2022 走看看