zoukankan      html  css  js  c++  java
  • 可持久化数组

    题目背景

    UPDATE : 最后一个点时间空间已经放大

    标题即题意

    有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集)

    题目描述

    如题,你需要维护这样的一个长度为 NN 的数组,支持如下几种操作

    1. 在某个历史版本上修改某一个位置上的值

    2. 访问某个历史版本上的某一位置的值

    此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本。版本编号即为当前操作的编号(从1开始编号,版本0表示初始状态数组)

    输入输出格式

    输入格式:

    输入的第一行包含两个正整数 N, MN,M, 分别表示数组的长度和操作的个数。

    第二行包含NN个整数,依次为初始状态下数组各位的值(依次为 a_iai1 leq i leq N1iN)。

    接下来MM行每行包含3或4个整数,代表两种操作之一(ii为基于的历史版本号):

    1. 对于操作1,格式为v_i 1 {loc}_i {value}_ivi 1 loci valuei,即为在版本v_ivi的基础上,将 a_{{loc}_i}aloci 修改为 {value}_ivaluei

    2. 对于操作2,格式为v_i 2 {loc}_ivi 2 loci,即访问版本v_ivi中的 a_{{loc}_i}aloci的值

    输出格式:

    输出包含若干行,依次为每个操作2的结果。

    输入输出样例

    输入样例#1: 
    5 10
    59 46 14 87 41
    0 2 1
    0 1 1 14
    0 1 1 57
    0 1 1 88
    4 2 4
    0 2 5
    0 2 4
    4 2 1
    2 2 2
    1 1 5 91
    输出样例#1: 
    59
    87
    41
    87
    88
    46

    说明

    数据规模:

    对于30%的数据:1 leq N, M leq {10}^31N,M103

    对于50%的数据:1 leq N, M leq {10}^41N,M104

    对于70%的数据:1 leq N, M leq {10}^51N,M105

    对于100%的数据:1 leq N, M leq {10}^6, 1 leq {loc}_i leq N, 0 leq v_i < i, -{10}^9 leq a_i, {value}_i leq {10}^91N,M106,1lociN,0vi<i,109ai,valuei109

    代码

    思路1:树上dfs离线操作

    #include<cstdio>
    #define f(c)   for(int i=1;i<=c;i++)
    using namespace std;
    const int maxn = 1000009;
    int head[maxn],n,m,cnt,a[maxn],ans[maxn];
    struct edg{int next,to;}e[maxn];
    struct node{int ver,opt,pos,val;}q[maxn]; 
    bool uuz[maxn];
    int I(){int x=0,f=1;char ch=getchar();
        for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
        for(;'0'<=ch&&ch<='9';ch=getchar())x=(x<<3)+(x<<1)+(ch^48);return x*f;}
    void add(int x,int y){e[++cnt].next=head[x];head[x]=cnt;e[cnt].to=y;}
    void dfs(int x){int last;
        q[x].opt==1?last=a[q[x].pos],a[q[x].pos]=q[x].val:ans[x]=a[q[x].pos];
        for(int i=head[x];i;i=e[i].next)dfs(e[i].to);
        if(q[x].opt==1)a[q[x].pos]=last;}
    int main(){n=I();m=I();f(n)a[i]=I();
        f(m){q[i].ver=I();q[i].opt=I();q[i].pos=I();
            q[i].opt==1?q[i].val=I():uuz[i]=1;add(q[i].ver,i);}
        dfs(0);f(m)if(uuz[i])printf("%d
    ",ans[i]);return 0;}

    思路2:可持久化线段树

    #include<cstdio>
    #define f(a)  for(int i=1;i<=a;i++)
    const int N=1000005;
    using namespace std;
    int a[N],n,q,rt[N*20];
    int I(){int x=0,f=1;char ch=getchar();
        for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
        for(;'0'<=ch&&ch<='9';ch=getchar())x=(x<<3)+(x<<1)+(ch^48);return x*f;}
    struct Persistable_Segment_Tree{
        int lc[N*20],rc[N*20],val[N*20],cnt;
        inline void build(int &o,int l,int r){
            o=++cnt;if(l==r){val[o]=a[l];return;}
            int mid=(l+r)>>1;build(lc[o],l,mid);build(rc[o],mid+1,r);}
        inline void ins(int &o,int pre,int l,int r,int q,int v){
            o=++cnt;lc[o]=lc[pre];rc[o]=rc[pre];val[o]=val[pre];
            if(l==r){val[o]=v;return;}int mid=(l+r)>>1;
            q<=mid?ins(lc[o],lc[pre],l,mid,q,v):ins(rc[o],rc[pre],mid+1,r,q,v);}
        inline int query(int o,int l,int r,int q){
            if(l==r)return val[o];int mid=(l+r)>>1;
            if(q<=mid)return query(lc[o],l,mid,q);
            else return query(rc[o],mid+1,r,q);}
    }T;
    int main(){n=I();int m=I();f(n)a[i]=I();T.build(rt[0],1,n);
        f(m){int pre=I(),opt=I(),x=I();
            if(opt==1){int v=I();T.ins(rt[i],rt[pre],1,n,x,v);}
           else printf("%d
    ",T.query(rt[pre],1,n,x)),rt[i]=rt[pre];}
    }

     思路3:主席树

    #include<cstdio>
    using namespace std;
    #define MAX 1000100
    #define f(c)   for(int i=1;i<=c;i++)
    int I(){int x=0,f=1;char ch=getchar();
        for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
        for(;'0'<=ch&&ch<='9';ch=getchar())x=(x<<3)+(x<<1)+(ch^48);return x*f;}
    int root[MAX],a[MAX],N,M;
    struct Node{int l,r,ls,rs,val;}t[MAX*20];
    int sum=0,tot=1;
    void Build(int now,int l,int r){t[now].l=l;t[now].r=r;
        if(l==r){t[now].val=a[l];return;}
        t[now].ls=++tot;int mid=(l+r)>>1;
        Build(tot,l,mid);t[now].rs=++tot;Build(tot,mid+1,r);}
    void AddNode(int now,int New,int k,int w){t[New]=t[now];
        if(t[now].l==t[now].r){t[New].val=w;return;}
        int mid=(t[now].l+t[now].r)>>1;
        if(k<=mid)t[New].ls=++tot,AddNode(t[now].ls,tot,k,w);
        else t[New].rs=++tot,AddNode(t[now].rs,tot,k,w);}
    void Query(int now,int k){
        if(t[now].l==t[now].r){printf("%d
    ",t[now].val);return;}
        int mid=(t[now].l+t[now].r)>>1;
        k<=mid?Query(t[now].ls,k):Query(t[now].rs,k);}
    int main(){N=I();M=I();f(N)a[i]=I();
        Build(1,1,N);root[0]=1;
        f(M){int v=I(),opt=I();
            if(opt==1){int vv=I(),ww=I();AddNode(root[v],root[++sum]=++tot,vv,ww);}
            else{int vv=I();Query(root[v],vv);root[++sum]=root[v];}}return 0;}
  • 相关阅读:
    Acwing199 余数之和
    试题 算法提高 WYF的交易地点(简单计算几何)
    试题 算法提高 八数码(bfs)
    试题 算法提高 合唱队形(dp)
    牛客练习 牛牛的mex(维护前缀后缀最小值)
    牛客练习 牛牛的算术(数学、规律)
    试题 算法提高 树的直径(dfs)
    高精度乘法(板子)
    试题 算法提高 不重叠的线段(dp)
    拜托了,牛老师(dfs)
  • 原文地址:https://www.cnblogs.com/muzu/p/7898484.html
Copyright © 2011-2022 走看看