zoukankan      html  css  js  c++  java
  • PAT A1024题解——高精度大数相加模板

    PAT:A1024 Palindromic Number

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.
    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤10​10​​) is the initial numer and K (≤100) is the maximum number of steps. The numbers are separated by a space.
    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.
    Sample Input 1:

    67 3

    Sample Output 1:

     484
     2

    Sample Input 2:

    69 3

    Sample Output 2:

    1353
    3

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    typedef long long ll;
    using namespace std;
    struct bign{
        int d[1000];
        int len;
        bign(){
            memset(d,0,sizeof(d));
            len = 0;
        }
    };

    bign change(char str[]){     //将整数转换为bign
        bign a;
        a.len = strlen(str);
        for(int i=0;i<a.len;i++){
            a.d[i] = str[a.len-1-i] - '0';
        }
        return a;
    }

    bool judge(bign a){         //判断是否是回文
        for(int i=0; i <= a.len/2; i++){
            if(a.d[i] != a.d[a.len-1-i]){
                return false;
            }
        }
        return true;
    }

    bign add(bign a,bign b){               //高精度a+b
        bign c;
        int carry = 0;
        for(int i=0; i < a.len || i < b.len; i++){
            int temp = a.d[i] + b.d[i] + carry;
            c.d[c.len++] = temp % 10;
            carry = temp / 10;
        }
        if(carry != 0){
            c.d[c.len++] = carry;
        }
        return c;
    }

    void print(bign a){            //输出bign
        for(int i = a.len-1; i >= 0; i--){
            printf("%d",a.d[i]);
        }
        printf(" ");
    }

    int main(){
        char str[1000];
        int k,num=0;
        while(scanf("%s %d",str,&k)!=EOF){
            bign a = change(str);
            while(num<k && judge(a)==false){
                bign b = a;
                reverse(b.d,b.d+b.len);  //将字符串倒置
                a = add(a,b);
                num++;
            }
            print(a);
            printf("%d ",num);
        }
        return 0;
    }

  • 相关阅读:
    自动轮播
    哈夫曼树的应用-金条划分
    计算两个日期相差的天数
    数据结构之算术表达式
    动态规划-矩阵最短路径
    动态规划-换钱最少货币数
    字母数字密码破解
    荷兰国旗问题
    集合并集
    进制数位幸运数
  • 原文地址:https://www.cnblogs.com/mxj961116/p/10347064.html
Copyright © 2011-2022 走看看