• pytorch-mnist神经网络训练


    在net.py里面构造网络,网络的结构为输入为28*28,第一层隐藏层的输出为300, 第二层输出的输出为100, 最后一层的输出层为10,  

    net.py 

    import torch
    from torch import nn
    
    class Batch_Net(nn.Module):
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(Batch_Net, self).__init__()
            self.layer_1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True))
            self.layer_2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True))
            self.output = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
    
        def forward(self, x):
            x = self.layer_1(x)
            x = self.layer_2(x)
            x = self.output(x)
            return x

    main.py 进行网络的训练 

    import torch
    from torch import nn, optim
    from torch.autograd import Variable
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    
    
    import net
    
    
    batch_size = 128  # 每一个batch_size的大小
    learning_rate = 1e-2 # 学习率的大小
    num_epoches = 20  # 迭代的epoch值
     # 表示data将数据变成0, 1之间,0.5, 0.5表示减去均值处以标准差
    data_tf = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])  # 表示均值和标准差
    # 获得训练集的数据
    train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
    # 获得测试集的数据
    test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf, download=True)
    # 获得训练集的可迭代队列
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    # 获得测试集的可迭代队列
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    # 构造模型的网络
    model = net.Batch_Net(28*28, 300, 100, 10)
    if torch.cuda.is_available(): # 如果有cuda就将模型放在GPU上
        model.cuda()
    
    criterion = nn.CrossEntropyLoss() # 构造交叉损失函数
    optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 构造模型的优化器
    
    for epoch in range(num_epoches): # 迭代的epoch 
        train_loss = 0 # 训练的损失值
        test_loss = 0 # 测试的损失值
        eval_acc = 0 # 测试集的准确率
        for data in train_loader:  # 获得一个batch的样本 
            img, label = data # 获得图片和标签
            img = img.view(img.size(0), -1) # 将图片进行img的转换
            if torch.cuda.is_available(): # 如果存在torch 
                img = Variable(img).cuda() # 将图片放在torch上
                label = Variable(label).cuda() # 将标签放在torch上 
            else:
                img = Variable(img)  # 构造img的变量
                label = Variable(label) 
            optimizer.zero_grad() # 消除optimizer的梯度
            out = model.forward(img) # 进行前向传播
            loss = criterion(out, label) # 计算损失值
            loss.backward() # 进行损失值的后向传播
            optimizer.step() # 进行优化器的优化
            train_loss += loss.data # 
        for data in test_loader:
            img, label = data
            img = img.view(img.size(0), -1)
            if torch.cuda.is_available():
                img = Variable(img, volatile=True).cuda()
                label = Variable(label, volatile=True).cuda()
            else:
                img = Variable(img, volatile=True)
                label = Variable(label, volatile=True)
            out = model.forward(img)
            loss = criterion(out, label)
            test_loss += loss.data
            top_p, top_class = out.topk(1, dim=1) # 获得输出的每一个样本的最大损失
            equals = top_class == label.view(*top_class.shape) # 判断两组样本的标签是否相等
            accuracy = torch.mean(equals.type(torch.FloatTensor)) # 计算准确率 
            eval_acc += accuracy
        print('train_loss{:.6f}, test_loss{:.6f}, Acc:{:.6f}'.format(train_loss / len(train_loader), test_loss / len(test_loader), eval_acc / len(test_loader)))
  • 相关阅读:
    科技公司网站
    jquery 设置元素内容html(),text(),val()
    jquery 相关class属性的操作
    jquery attr()和prop()方法的使用
    检测移动设备横竖屏
    设定程序在某个特定时刻执行
    js设计模式-建造者模式
    css自定义字体完美解决方案example
    css透明属性
    css3多列example
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/11719714.html
走看看 - 开发者的网上家园