zoukankan      html  css  js  c++  java
  • mysql 执行计划分析三看, explain,profiling,optimizer_trace

    http://blog.csdn.net/xj626852095/article/details/52767963

    step 1

     使用explain 查看执行计划, 5.6后可以加参数 explain format=json xxx 输出json格式的信息

    step 2 

    使用profiling详细的列出在每一个步骤消耗的时间,前提是先执行一遍语句

    #打开profiling 的设置
    SET profiling = 1;
    SHOW VARIABLES LIKE '%profiling%';
    
    #查看队列的内容
    show profiles;  
    #来查看统计信息
    show profile block io,cpu for query 3;


    step 3  

    Optimizer trace是MySQL5.6添加的新功能,可以看到大量的内部查询计划产生的信息, 先打开设置,然后执行一次sql,最后查看`information_schema`.`OPTIMIZER_TRACE`的内容

    #打开设置
    SET optimizer_trace='enabled=on';  
    #最大内存根据实际情况而定, 可以不设置
    SET OPTIMIZER_TRACE_MAX_MEM_SIZE=1000000;
    SET END_MARKERS_IN_JSON=ON;
    SET optimizer_trace_limit = 1;
    SHOW VARIABLES LIKE '%optimizer_trace%';
    
    #执行所需sql后,查看该表信息即可看到详细的执行过程
    SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`;

    MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式

    http://blog.csdn.net/melody_mr/article/details/48950601

    一 表结构如下: 

    CREATE TABLE t_audit_operate_log (
      Fid bigint(16) AUTO_INCREMENT,
      Fcreate_time int(10) unsigned NOT NULL DEFAULT '0',
      Fuser varchar(50) DEFAULT '',
      Fip bigint(16) DEFAULT NULL,
      Foperate_object_id bigint(20) DEFAULT '0',
      PRIMARY KEY (Fid),
      KEY indx_ctime (Fcreate_time),
      KEY indx_user (Fuser),
      KEY indx_objid (Foperate_object_id),
      KEY indx_ip (Fip)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

    执行查询:

    MySQL> explain select count(*) from t_audit_operate_log where Fuser='XX@XX.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199G

    *************************** 1. row ***************************

    id: 1

    select_type: SIMPLE

    table: t_audit_operate_log

    type: ref

    possible_keys: indx_ctime,indx_user

    key: indx_user

    key_len: 153

    ref: const

    rows: 2007326

    Extra: Using where

    发现,使用了一个不合适的索引, 不是很理想,于是改成指定索引:

    mysql> explain select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016@cyou-inc.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199G

    *************************** 1. row ***************************

    id: 1

    select_type: SIMPLE

    table: t_audit_operate_log

    type: range

    possible_keys: indx_ctime

    key: indx_ctime

    key_len: 5

    ref: NULL

    rows: 670092

    Extra: Using where

    实际执行耗时,后者比前者快了接近10

    问题: 很奇怪,优化器为何不选择使用 indx_ctime 索引,而选择了明显会扫描更多行的 indx_user 索引。

    分析2个索引的数据量如下:  两个条件的唯一性对比:

    select count(*) from t_audit_operate_log where Fuser='XX@XX.com';
    +----------+
    | count(*) |
    +----------+
    | 1238382 | 
    +----------+

    select count(*) from t_audit_operate_log where Fcreate_time>=1407254400 and Fcreate_time<=1407427199;
    +----------+
    | count(*) |
    +----------+
    | 198920 | 
    +----------+

    显然,使用索引indx_ctime好于indx_user,但MySQL却选择了indx_user. 为什么?

    于是,使用 OPTIMIZER_TRACE进一步探索.

    二  OPTIMIZER_TRACE的过程说明

    以本处事例简要说明OPTIMIZER_TRACE的过程.

    查看OPTIMIZER_TRACE方法:

    1.set optimizer_trace='enabled=on';    --- 开启trace

    2.set optimizer_trace_max_mem_size=1000000;    --- 设置trace大小

    3.set end_markers_in_json=on;    --- 增加trace中注释

    4.select * from information_schema.optimizer_traceG;

    [plain] view plain copy 
     
    1. {  
    2.   "steps": [  
    3.     {  
    4.       "join_preparation": {  ---优化准备工作  
    5.         "select#": 1,  
    6.         "steps": [  
    7.           {  
    8.             "expanded_query": "/* select#1 */ select count(0) AS `count(*)` from `t_audit_operate_log` where ((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"  
    9.           }  
    10.         ] /* steps */  
    11.       } /* join_preparation */  
    12.     },  
    13.     {  
    14.       "join_optimization": {  ---优化工作的主要阶段,包括逻辑优化和物理优化两个阶段  
    15.         "select#": 1,  
    16.         "steps": [  ---优化工作的主要阶段, 逻辑优化阶段  
    17.           {  
    18.             "condition_processing": {  ---逻辑优化,条件化简  
    19.               "condition": "WHERE",  
    20.               "original_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))",  
    21.               "steps": [  
    22.                 {  
    23.                   "transformation": "equality_propagation",  ---逻辑优化,条件化简,等式处理  
    24.                   "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"  
    25.                 },  
    26.                 {  
    27.                   "transformation": "constant_propagation",  ---逻辑优化,条件化简,常量处理  
    28.                   "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"  
    29.                 },  
    30.                 {  
    31.                   "transformation": "trivial_condition_removal",  ---逻辑优化,条件化简,条件去除  
    32.                   "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"  
    33.                 }  
    34.               ] /* steps */  
    35.             } /* condition_processing */  
    36.           },  ---逻辑优化,条件化简,结束  
    37.           {  
    38.             "table_dependencies": [  ---逻辑优化, 找出表之间的相互依赖关系. 非直接可用的优化方式.   
    39.               {  
    40.                 "table": "`t_audit_operate_log`",  
    41.                 "row_may_be_null": false,  
    42.                 "map_bit": 0,  
    43.                 "depends_on_map_bits": [  
    44.                 ] /* depends_on_map_bits */  
    45.               }  
    46.             ] /* table_dependencies */  
    47.           },  
    48.           {  
    49.             "ref_optimizer_key_uses": [   ---逻辑优化,  找出备选的索引  
    50.               {  
    51.                 "table": "`t_audit_operate_log`",  
    52.                 "field": "Fuser",  
    53.                 "equals": "'XX@XX.com'",  
    54.                 "null_rejecting": false  
    55.               }  
    56.             ] /* ref_optimizer_key_uses */  
    57.           },  
    58.           {  
    59.             "rows_estimation": [   ---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描和索引扫描的代价估算. 每个索引都估算索引扫描代价  
    60.               {  
    61.                 "table": "`t_audit_operate_log`",  
    62.                 "range_analysis": {  
    63.                   "table_scan": {---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描的代价  
    64.                     "rows": 8150516,  
    65.                     "cost": 1.73e6  
    66.                   } /* table_scan */,  
    67.                   "potential_range_indices": [ ---逻辑优化, 列出备选的索引. 后续版本字符串变为potential_range_indexes  
    68.                     {  
    69.                       "index": "PRIMARY",---逻辑优化, 本行表明主键索引不可用  
    70.                       "usable": false,  
    71.                       "cause": "not_applicable"  
    72.                     },  
    73.                     {  
    74.                       "index": "indx_ctime",---逻辑优化, 索引indx_ctime  
    75.                       "usable": true,  
    76.                       "key_parts": [  
    77.                         "Fcreate_time",  
    78.                         "Fid"  
    79.                       ] /* key_parts */  
    80.                     },  
    81.                     {  
    82.                       "index": "indx_user",---逻辑优化, 索引indx_user  
    83.                       "usable": true,  
    84.                       "key_parts": [  
    85.                         "Fuser",  
    86.                         "Fid"  
    87.                       ] /* key_parts */  
    88.                     },  
    89.                     {  
    90.                       "index": "indx_objid",---逻辑优化, 索引  
    91.                       "usable": false,  
    92.                       "cause": "not_applicable"  
    93.                     },  
    94.                     {  
    95.                       "index": "indx_ip",---逻辑优化, 索引  
    96.                       "usable": false,  
    97.                       "cause": "not_applicable"  
    98.                     }  
    99.                   ] /* potential_range_indices */,  
    100.                   "setup_range_conditions": [ ---逻辑优化, 如果有可下推的条件,则带条件考虑范围查询  
    101.                   ] /* setup_range_conditions */,  
    102.                   "group_index_range": {---逻辑优化, 如带有GROUPBY或DISTINCT,则考虑是否有索引可优化这种操作. 并考虑带有MIN/MAX的情况  
    103.                     "chosen": false,  
    104.                     "cause": "not_group_by_or_distinct"  
    105.                   } /* group_index_range */,  
    106.                   "analyzing_range_alternatives": {---逻辑优化,开始计算每个索引做范围扫描的花费(等值比较是范围扫描的特例)  
    107.                     "range_scan_alternatives": [  
    108.                       {  
    109.                         "index": "indx_ctime", ---[A]  
    110.                         "ranges": [  
    111.                           "1407081600 <= Fcreate_time <= 1407427199"  
    112.                         ] /* ranges */,  
    113.                         "index_dives_for_eq_ranges": true,  
    114.                         "rowid_ordered": false,  
    115.                         "using_mrr": true,  
    116.                         "index_only": false,  
    117.                         "rows": 688362,  
    118.                         "cost": 564553, ---逻辑优化,这个索引的代价最小  
    119.                         "chosen": true ---逻辑优化,这个索引的代价最小,被选中. (比前面的table_scan 和其他索引的代价都小)  
    120.                       },  
    121.                       {  
    122.                         "index": "indx_user",  
    123.                         "ranges": [  
    124.                           "XX@XX.com <= Fuser <= XX@XX.com"  
    125.                         ] /* ranges */,  
    126.                         "index_dives_for_eq_ranges": true,  
    127.                         "rowid_ordered": true,  
    128.                         "using_mrr": true,  
    129.                         "index_only": false,  
    130.                         "rows": 1945894,  
    131.                         "cost": 1.18e6,  
    132.                         "chosen": false,  
    133.                         "cause": "cost"  
    134.                       }  
    135.                     ] /* range_scan_alternatives */,  
    136.                     "analyzing_roworder_intersect": {  
    137.                       "usable": false,  
    138.                       "cause": "too_few_roworder_scans"  
    139.                     } /* analyzing_roworder_intersect */  
    140.                   } /* analyzing_range_alternatives */,---逻辑优化,开始计算每个索引做范围扫描的花费. 这项工作结算  
    141.                   "chosen_range_access_summary": {---逻辑优化,开始计算每个索引做范围扫描的花费. 总结本阶段最优的.  
    142.                     "range_access_plan": {  
    143.                       "type": "range_scan",  
    144.                       "index": "indx_ctime",  
    145.                       "rows": 688362,  
    146.                       "ranges": [  
    147.                         "1407081600 <= Fcreate_time <= 1407427199"  
    148.                       ] /* ranges */  
    149.                     } /* range_access_plan */,  
    150.                     "rows_for_plan": 688362,  
    151.                     "cost_for_plan": 564553,  
    152.                     "chosen": true    -- 这里看到的cost和rows都比 indx_user 要来的小很多---这个和[A]处是一样的,是信息汇总.  
    153.                   } /* chosen_range_access_summary */  
    154.                 } /* range_analysis */  
    155.               }  
    156.             ] /* rows_estimation */ ---逻辑优化, 估算每个表的元组个数. 行估算结束  
    157.           },  
    158.           {  
    159.             "considered_execution_plans": [ ---物理优化, 开始多表连接的物理优化计算  
    160.               {  
    161.                 "plan_prefix": [  
    162.                 ] /* plan_prefix */,  
    163.                 "table": "`t_audit_operate_log`",  
    164.                 "best_access_path": {  
    165.                   "considered_access_paths": [  
    166.                     {  
    167.                       "access_type": "ref", ---物理优化, 计算indx_user索引上使用ref方查找的花费,  
    168.                       "index": "indx_user",  
    169.                       "rows": 1.95e6,  
    170.                       "cost": 683515,  
    171.                       "chosen": true  
    172.                     }, ---物理优化, 本应该比较所有的可用索引,即打印出多个格式相同的但索引名不同的内容,这里却没有。推测是bug--没有遍历每一个索引.  
    173.                     {  
    174.                       "access_type": "range",---物理优化,猜测对应的是indx_time(没有实例可进行调试,对比5.7的跟踪信息猜测而得)  
    175.                       "rows": 516272,  
    176.                       "cost": 702225,---物理优化,代价大于了ref方式的683515,所以没有被选择  
    177.                       "chosen": false   -- cost比上面看到的增加了很多,但rows没什么变化 ---物理优化,此索引没有被选择  
    178.                     }  
    179.                   ] /* considered_access_paths */  
    180.                 } /* best_access_path */,  
    181.                 "cost_for_plan": 683515, ---物理优化,汇总在best_access_path 阶段得到的结果  
    182.                 "rows_for_plan": 1.95e6,  
    183.                 "chosen": true   -- cost比上面看到的竟然小了很多?虽然rows没啥变化  ---物理优化,汇总在best_access_path 阶段得到的结果  
    184.               }  
    185.             ] /* considered_execution_plans */  
    186.           },  
    187.           {  
    188.             "attaching_conditions_to_tables": {---逻辑优化,尽量把条件绑定到对应的表上  
    189.               } /* attaching_conditions_to_tables */  
    190.           },  
    191.           {  
    192.             "refine_plan": [  
    193.               {  
    194.                 "table": "`t_audit_operate_log`",---逻辑优化,下推索引条件"pushed_index_condition";其他条件附加到表上做为过滤条件"table_condition_attached"  
    195.               }  
    196.             ] /* refine_plan */  
    197.           }  
    198.         ] /* steps */  
    199.       } /* join_optimization */ ---逻辑优化和物理优化结束  
    200.     },  
    201.     {  
    202.       "join_explain": {} /* join_explain */  
    203.     }  
    204.   ] /* steps */  
    三 其他一个相似问题
    单表扫描,使用ref和range从索引获取数据一例  
    http://blog.163.com/li_hx/blog/static/183991413201461853637715/
    


    四 问题的解决方式

    遇到单表上有多个索引的时候,在MySQL5.6.20版本之前的版本,需要人工强制使用索引,以达到最好的效果.

  • 相关阅读:
    使用 Azure CLI 管理 Azure 磁盘
    使用 Azure CLI 创建和管理 Linux VM
    使用 PowerShell 创建 Linux 虚拟机
    使用 Azure 门户创建 Linux 虚拟机
    使用 Azure CLI 创建 Linux 虚拟机
    Java单元测试学习
    Unix系统编程()改变信号处置:signal
    防止js拦截跳转请求的方法
    Groovy学习()面向Java开发者的Groovy
    Groovy学习()起步
  • 原文地址:https://www.cnblogs.com/mydriverc/p/7086542.html
Copyright © 2011-2022 走看看