zoukankan      html  css  js  c++  java
  • 2-sat 输出任意一组可行解&拓扑排序+缩点 poj3683

    Priest John's Busiest Day
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 8170   Accepted: 2784   Special Judge

    Description

    John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

    Note that John can not be present at two weddings simultaneously.

    Input

    The first line contains a integer N ( 1 ≤ N ≤ 1000). 
    The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

    Output

    The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

    Sample Input

    2
    08:00 09:00 30
    08:15 09:00 20
    
    

    Sample Output

    YES
    08:00 08:30
    08:40 09:00
    方法一:tarjan缩点+拓扑排序
    #include"stdio.h"
    #include"string.h"
    #include"stdlib.h"
    #include"queue"
    #include"algorithm"
    #include"string.h"
    #include"string"
    #include"vector"
    #include"stack"
    #include"map"
    #define inf 0x3f3f3f3f
    #define M 2009
    using namespace std;
    struct node
    {
        int u,v,next;
    }edge[M*M*5];
    stack<int>q;
    struct EDGE
    {
        int v;
        EDGE(int vv)
        {
            v=vv;
        }
    };
    vector<EDGE>Edge[M];
    int t,head[M],low[M],dfn[M],belong[M],num,index,use[M],n,degree[M],Color[M],fp[M];
    void init()
    {
        t=0;
        memset(head,-1,sizeof(head));
    }
    void add(int u,int v)
    {
        edge[t].u=u;
        edge[t].v=v;
        edge[t].next=head[u];
        head[u]=t++;
    }
    void tarjan(int u)
    {
        low[u]=dfn[u]=++index;
        q.push(u);
        use[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(!dfn[v])
            {
                tarjan(v);
                low[u]=min(low[u],low[v]);
            }
            else if(use[v])
                low[u]=min(low[u],dfn[v]);
        }
        if(low[u]==dfn[u])
        {
            num++;
            int vv;
            do
            {
                vv=q.top();
                q.pop();
                use[vv]=0;
                belong[vv]=num;
            }while(vv!=u);
        }
    }
    int psq(int n)
    {
        int i;
        num=index=0;
        memset(use,0,sizeof(use));
        memset(dfn,0,sizeof(dfn));
        for(i=1;i<=2*n;i++)
            if(!dfn[i])
            tarjan(i);
        for(i=1;i<=n;i++)
            if(belong[i]==belong[i+n])
            return 0;
        return 1;
    }
    struct Time
    {
        int l,r;
    }time[M];
    int ok(Time a,Time b)
    {
        if(a.r<=b.l||b.r<=a.l)
            return 0;
        return 1;
    }
    int op(int u)
    {
        if(u<=n)
            return n+u;
        else
            return u-n;
    }
    int main()
    {
        int i,j;
        while(scanf("%d",&n)!=-1)
        {
            for(i=1;i<=n;i++)
            {
                int h1,h2,m1,m2,d;
                scanf("%d:%d %d:%d %d",&h1,&m1,&h2,&m2,&d);
                time[i].l=h1*60+m1;
                time[i].r=h1*60+m1+d;
                time[i+n].l=h2*60+m2-d;
                time[i+n].r=h2*60+m2;
            }
            init();
            for(i=1;i<=n;i++)
            {
                for(j=i+1;j<=n;j++)
                {
                    if(ok(time[i],time[j]))
                    {
                        add(i,j+n);
                        add(j,i+n);
                    }
                    if(ok(time[i],time[j+n]))
                    {
                        add(i,j);
                        add(j+n,i+n);
                    }
                    if(ok(time[i+n],time[j]))
                    {
                        add(i+n,j+n);
                        add(j,i);
                    }
                    if(ok(time[i+n],time[j+n]))
                    {
                        add(i+n,j);
                        add(j+n,i);
                    }
                }
            }
            if(psq(n))//拓扑排序输出可行解
            {
                printf("YES
    ");
                memset(degree,0,sizeof(degree));//缩点的入度
                memset(Color,0,sizeof(Color));//染色
                for(i=0;i<t;i++)
                {
                    int u=edge[i].u;
                    int v=edge[i].v;
                    fp[belong[u]]=belong[op(u)];//记录当前点所在的联通块与对应点所在联通块的相互影射
                    fp[belong[op(u)]]=belong[u];
                    if(belong[u]!=belong[v])
                    {
                        Edge[belong[v]].push_back(EDGE(belong[u]));//缩点建图,若不在同一个连通块则建立反边
                        degree[belong[u]]++;
                    }
                }
                queue<int>q;
                for(i=1;i<=num;i++)
                    if(degree[i]==0)q.push(i);//入度为0的点入队
                while(!q.empty())
                {
                    int u=q.front();
                    q.pop();
                    if(Color[u]==0)//对未着色的点着色同时把对立点所在连通块着为相反的颜色
                    {
                        Color[u]=1;
                        Color[fp[u]]=-1;
                    }
                    for(i=0;i<(int)Edge[u].size();i++)
                    {
                        int v=Edge[u][i].v;
                        if(--degree[v]==0)
                            q.push(v);
                    }
                }
                for(i=1;i<=n;i++)
                {
                    if(Color[belong[i]]==1)//连通块标记为1的是可行解
                        printf("%02d:%02d %02d:%02d
    ",time[i].l/60,time[i].l%60,time[i].r/60,time[i].r%60);
                    else
                        printf("%02d:%02d %02d:%02d
    ",time[i+n].l/60,time[i+n].l%60,time[i+n].r/60,time[i+n].r%60);
                }
                for(i=1;i<=num;i++)
                    Edge[i].clear();
            }
            else
                printf("NO
    ");
        }
    }
    
    方法二:dfs+枚举(字典序最小)
    #include"stdio.h"
    #include"string.h"
    #include"stdlib.h"
    #include"queue"
    #include"algorithm"
    #include"string.h"
    #include"string"
    #include"vector"
    #include"stack"
    #include"map"
    #define inf 0x3f3f3f3f
    #define M 2009
    using namespace std;
    struct node
    {
        int u,v,next;
    }edge[M*M*5];
    stack<int>q;
    struct EDGE
    {
        int v;
        EDGE(int vv)
        {
            v=vv;
        }
    };
    vector<EDGE>Edge[M];
    int t,head[M],low[M],dfn[M],belong[M],num,index,use[M],color[M],s[M],cnt,n,degree[M],Color[M],fp[M];
    void init()
    {
        t=0;
        memset(head,-1,sizeof(head));
    }
    void add(int u,int v)
    {
        edge[t].u=u;
        edge[t].v=v;
        edge[t].next=head[u];
        head[u]=t++;
    }
    struct Time
    {
        int l,r;
    }time[M];
    int ok(Time a,Time b)
    {
        if(a.r<=b.l||b.r<=a.l)
            return 0;
        return 1;
    }
    int op(int u)
    {
        if(u<=n)
            return n+u;
        else
            return u-n;
    }
    int dfs(int u)
    {
        if(color[u]==1)
            return 1;
        if(color[u]==-1)
            return 0;
        s[cnt++]=u;
        color[u]=1;
        color[op(u)]=-1;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(!dfs(v))
                return 0;
        }
        return 1;
    }
    int slove(int n)
    {
        int i,j;
        memset(color,0,sizeof(color));
        for(i=1;i<=2*n;i++)
        {
            if(color[i])continue;
            cnt=0;
            if(!dfs(i))
            {
                for(j=0;j<cnt;j++)
                    color[s[j]]=color[op(s[j])]=0;
                if(!dfs(op(i)))
                    return 0;
            }
        }
        return 1;
    }
    int main()
    {
        int i,j;
        while(scanf("%d",&n)!=-1)
        {
            for(i=1;i<=n;i++)
            {
                int h1,h2,m1,m2,d;
                scanf("%d:%d %d:%d %d",&h1,&m1,&h2,&m2,&d);
                time[i].l=h1*60+m1;
                time[i].r=h1*60+m1+d;
                time[i+n].l=h2*60+m2-d;
                time[i+n].r=h2*60+m2;
            }
            init();
            for(i=1;i<=n;i++)
            {
                for(j=i+1;j<=n;j++)
                {
                    if(ok(time[i],time[j]))
                    {
                        add(i,j+n);
                        add(j,i+n);
                    }
                    if(ok(time[i],time[j+n]))
                    {
                        add(i,j);
                        add(j+n,i+n);
                    }
                    if(ok(time[i+n],time[j]))
                    {
                        add(i+n,j+n);
                        add(j,i);
                    }
                    if(ok(time[i+n],time[j+n]))
                    {
                        add(i+n,j);
                        add(j+n,i);
                    }
                }
            }
            if(slove(n))
            {
                printf("YES
    ");
                for(i=1;i<=n;i++)
                {
                    if(color[i]==1)
                        printf("%02d:%02d %02d:%02d
    ",time[i].l/60,time[i].l%60,time[i].r/60,time[i].r%60);
                    if(color[i+n]==1)
                        printf("%02d:%02d %02d:%02d
    ",time[i+n].l/60,time[i+n].l%60,time[i+n].r/60,time[i+n].r%60);
                }
                for(i=1;i<=num;i++)
                    Edge[i].clear();
            }
    
            else
                printf("NO
    ");
        }
    }
    



  • 相关阅读:
    Linux0.11内核--fork进程分析
    Linux0.11内核--内存管理之1.初始化
    Linux0.11内核--进程调度分析之2.调度
    Linux0.11内核--进程调度分析之1.初始化
    github
    推荐大家一个靠谱的论文检测平台。重复的部分有详细出处以及具体修改意见,能直接在文章上做修改,全部改完一键下载就搞定了。他们现在正在做毕业季活动, 赠送很多免费字数,可以说是十分划算了!地址是:https://www.paperpass.com/
    妈妈再也不用担心我找idea激活码了
    eclipse集成tomcat
    DNS--localhost
    RFC 2819)第5节"Definitions"除外的全部内容
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348119.html
Copyright © 2011-2022 走看看