zoukankan      html  css  js  c++  java
  • 判断最小生成树是否唯一

    http://poj.org/problem?id=1679

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 20487   Accepted: 7207

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    程序:

    #include"stdio.h"
    #include"string.h"
    #include"stack"
    #include"math.h"
    #include"algorithm"
    #include"stdlib.h"
    #define M 222
    #define inf 100000000
    #define eps 1e-12
    using namespace std;
    struct node
    {
        int u,v,w;
    }e[M*M];
    int cmp(node a,node b)
    {
        return a.w<b.w;
    }
    int f[M];
    int finde(int x)
    {
        if(x!=f[x])
            f[x]=finde(f[x]);
        return f[x];
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            int n,m,i,j;
            scanf("%d%d",&n,&m);
            for(i=0;i<m;i++)
                scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
            sort(e,e+m,cmp);
            int num=0;
            int fuck=0;
            int sum=0;
            for(i=1;i<=n;i++)
                f[i]=i;
            for(i=0;i<m;)
            {
                j=i;
                while(e[i].w==e[j].w&&j<m)
                {
                    int x=finde(e[j].u);
                    int y=finde(e[j].v);
                    if(x!=y)
                        fuck++;
                    j++;
                }
                j=i;
                while(e[i].w==e[j].w&&j<m)
                {
                    int x=finde(e[j].u);
                    int y=finde(e[j].v);
                    if(x!=y)
                    {
                        f[x]=y;
                        sum+=e[i].w;
                        num++;
                    }
                    j++;
                }
                i=j;
                if(num==n-1)
                    break;
            }
            if(fuck>num)
                printf("Not Unique!
    ");
            else
                printf("%d
    ",sum);
            //printf("%d %d
    ",fuck,num);
        }
    }
    


  • 相关阅读:
    java IO选择流的原则及其与IO流相关类的关系
    图形用户界面(graphical user interface)
    泛型
    流、文件及基于文本的应用
    java线程
    多态与方法调用
    在eclipse中使用javap工具反汇编
    java类的访问控制符与其他几个特殊修饰符的总结
    java中几个特殊的类
    @property在内存管理中的参数问题
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348179.html
Copyright © 2011-2022 走看看