zoukankan      html  css  js  c++  java
  • tarjan算法求缩点+树形DP求直径

    hdu4612

    Warm up

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 3184    Accepted Submission(s): 720


    Problem Description
      N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.
      If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
    People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
      Note that there could be more than one channel between two planets.
     

    Input
      The input contains multiple cases.
      Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
      (2<=N<=200000, 1<=M<=1000000)
      Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
      A line with two integers '0' terminates the input.
     

    Output
      For each case, output the minimal number of bridges after building a new channel in a line.
     

    Sample Input
    4 4 1 2 1 3 1 4 2 3 0 0
     

    Sample Output
    0
    题意:

    给定一个联通图,问加入一条边后,最少还余下多少个割边

    分析:先求强连通分量个数num,然后缩点形成一棵树,再求树的直径cnt,答案就是num-1-cnt;

    程序:

    #pragma comment(linker, "/STACK:10240000000000,10240000000000")
    #include"stdio.h"
    #include"string.h"
    #include"stdlib.h"
    #include"stack"
    #include"iostream"
    #define M 201009
    #define inf 99999999
    using namespace std;
    stack<int>q;
    struct st
    {
         int u,v,w,next;
    }edge[M*10];
    int head[M],use[M],t,dis[M][3],in[M],index,num,belong[M],dfn[M],low[M];
    
    void init()
    {
         t=0;
         memset(head,-1,sizeof(head));
    }
    void add(int u,int v,int w)
    {
         edge[t].u=u;
         edge[t].v=v;
         edge[t].w=w;
         edge[t].next=head[u];
         head[u]=t++;
    }
    void tarjan(int u,int id)
    {
         dfn[u]=low[u]=++index;
         q.push(u);
         use[u]=1;
         int i;
         for(i=head[u];i!=-1;i=edge[i].next)
         {
              int v=edge[i].v;
              if(i==(id^1))continue;
              if(!dfn[v])
              {
                   tarjan(v,i);
                   low[u]=min(low[u],low[v]);
              }
              low[u]=min(low[u],dfn[v]);
         }
         if(dfn[u]==low[u])
         {
              int vv;
              num++;
              do
              {
                   vv=q.top();
                   q.pop();
                   belong[vv]=num;
                   use[vv]=0;
              }while(vv!=u);
         }
    }
    void dfs(int u)
    {
         use[u]=1;
         for(int i=head[u];i!=-1;i=edge[i].next)
         {
              int v=edge[i].v;
              if(!use[v])
              {
                   dfs(v);
                   //更新最大值和次大值
                   if(dis[u][0]<dis[v][0]+edge[i].w)
                   {
                        int tt=dis[u][0];
                        dis[u][0]=dis[v][0]+edge[i].w;
                        dis[u][1]=tt;
                   }
                   else if(dis[u][1]<dis[v][0]+edge[i].w)
                        dis[u][1]=dis[v][0]+edge[i].w;
              }
         }
         if(in[u]==1&&u!=1)//注意
              dis[u][0]=dis[u][1]=0;
    }
    void solve(int n)
    {
         index=num=0;
         memset(dfn,0,sizeof(dfn));
         memset(low,0,sizeof(low));
         memset(use,0,sizeof(use));
         memset(belong,0,sizeof(belong));
         tarjan(1,-1);
    }
    int uu[M],vv[M];
    int main()
    {
         int n,m,i;
         while(scanf("%d%d",&n,&m),m||n)
         {
              init();
              while(m--)
              {
                   int a,b;
                   scanf("%d%d",&a,&b);
                   add(a,b,1);
                   add(b,a,1);
              }
              solve(n);
              int cnt=0;
              for(i=0;i<t;i+=2)
              {
                   int u=edge[i].u;
                   int v=edge[i].v;
                   if(belong[u]!=belong[v])
                   {
                        uu[cnt]=belong[u];
                        vv[cnt]=belong[v];
                        cnt++;
                   }
              }
              init();
              memset(in,0,sizeof(in));
              memset(use,0,sizeof(use));
              memset(dis,0,sizeof(dis));
              for(i=0;i<cnt;i++)
              {
                   //printf("%d %d
    ",uu[i],vv[i]);
                   add(uu[i],vv[i],1);
                   add(vv[i],uu[i],1);
                   in[uu[i]]++;
                   in[vv[i]]++;
              }
              dfs(1);
              int ans=0;
              for(i=1;i<=num;i++)
              {
                   if(ans<dis[i][0]+dis[i][1])
                        ans=dis[i][1]+dis[i][0];
              }
              printf("%d
    ",num-1-ans);
         }
         return 0;
    }
    


  • 相关阅读:
    全国省市县三级数据库
    多源教学数据管理系统之团队课设博客
    1.判断字符串中的字符是否Unique
    [转载]linux防火墙基础和管理设置iptables规则
    (转)Sed使用详解
    2.判断回文(Anagrams)
    【转载】关于23 种设计模式的有趣见解
    macbook M1芯片在centos8下安装k8s笔记
    Winform 学习初级 从WebForm到WinForm
    如何建立数据模型
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348226.html
Copyright © 2011-2022 走看看