可以提前读这篇文章:多读少写的场景 如何提高性能
写入时复制(CopyOnWrite)思想
/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */ public boolean add(E e) { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] elements = getArray(); int len = elements.length; Object[] newElements = Arrays.copyOf(elements, len + 1); newElements[len] = e; setArray(newElements); return true; } finally { lock.unlock(); } }
读的时候不需要加锁,如果读的时候有多个线程正在向CopyOnWriteArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的CopyOnWriteArrayList。
public E get(int index) { return get(getArray(), index); }
JDK中并没有提供CopyOnWriteMap,我们可以参考CopyOnWriteArrayList来实现一个,基本代码如下:
import java.util.Collection; import java.util.Map; import java.util.Set; public class CopyOnWriteMap<K, V> implements Map<K, V>, Cloneable { private volatile Map<K, V> internalMap; public CopyOnWriteMap() { internalMap = new HashMap<K, V>(); } public V put(K key, V value) { synchronized (this) { Map<K, V> newMap = new HashMap<K, V>(internalMap); V val = newMap.put(key, value); internalMap = newMap; return val; } } public V get(Object key) { return internalMap.get(key); } public void putAll(Map<? extends K, ? extends V> newData) { synchronized (this) { Map<K, V> newMap = new HashMap<K, V>(internalMap); newMap.putAll(newData); internalMap = newMap; } } }
实现很简单,只要了解了CopyOnWrite机制,我们可以实现各种CopyOnWrite容器,并且在不同的应用场景中使用。
几个要点
- 实现了List接口
- 内部持有一个ReentrantLock lock = new ReentrantLock();
- 底层是用volatile transient声明的数组 array
- 读写分离,写时复制出一个新的数组,完成插入、修改或者移除操作后将新数组赋值给array
注:
volatile (挥发物、易变的):变量修饰符,只能用来修饰变量。volatile修饰的成员变量在每次被线程访问时,都强迫从共享内存中重读该成员变量的值。而且,当成员变量发生变 化时,强迫线程将变化值回写到共享内存。这样在任何时刻,两个不同的线程总是看到某个成员变量的同一个值。
transient (暂短的、临时的):修饰符,只能用来修饰字段。在对象序列化的过程中,标记为transient的变量不会被序列化。
增删改查
1)增
public boolean add(E e) { final ReentrantLock lock = this.lock; //获得锁 lock.lock(); try { Object[] elements = getArray(); int len = elements.length; //复制一个新的数组 Object[] newElements = Arrays.copyOf(elements, len + 1); //插入新值 newElements[len] = e; //将新的数组指向原来的引用 setArray(newElements); return true; } finally { //释放锁 lock.unlock(); } } public void add(int index, E element) { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] elements = getArray(); int len = elements.length; if (index > len || index < 0) throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+len); Object[] newElements; int numMoved = len - index; if (numMoved == 0) newElements = Arrays.copyOf(elements, len + 1); else { newElements = new Object[len + 1]; System.arraycopy(elements, 0, newElements, 0, index); System.arraycopy(elements, index, newElements, index + 1, numMoved); } newElements[index] = element; setArray(newElements); } finally { lock.unlock(); } }
2)删
public E remove(int index) { final ReentrantLock lock = this.lock; //获得锁 lock.lock(); try { Object[] elements = getArray(); int len = elements.length; E oldValue = get(elements, index); int numMoved = len - index - 1; if (numMoved == 0) //如果删除的元素是最后一个,直接复制该元素前的所有元素到新的数组 setArray(Arrays.copyOf(elements, len - 1)); else { //创建新的数组 Object[] newElements = new Object[len - 1]; //将index+1至最后一个元素向前移动一格 System.arraycopy(elements, 0, newElements, 0, index); System.arraycopy(elements, index + 1, newElements, index, numMoved); setArray(newElements); } return oldValue; } finally { lock.unlock(); } }
3)改
public E set(int index, E element) { final ReentrantLock lock = this.lock; //获得锁 lock.lock(); try { Object[] elements = getArray(); E oldValue = get(elements, index); if (oldValue != element) { int len = elements.length; //创建新数组 Object[] newElements = Arrays.copyOf(elements, len); //替换元素 newElements[index] = element; //将新数组指向原来的引用 setArray(newElements); } else { // Not quite a no-op; ensures volatile write semantics setArray(elements); } return oldValue; } finally { //释放锁 lock.unlock(); } }
4)查
//直接获取index对应的元素 public E get(int index) {return get(getArray(), index);} private E get(Object[] a, int index) {return (E) a[index];}
CopyOnWrite的应用场景
CopyOnWrite并发容器用于读多写少的并发场景。比如白名单,黑名单,商品类目的访问和更新场景,假如我们有一个搜索网站,用户在这个网站的搜索框中,输入关键字搜索内容,但是某些关键字不允许被搜索。这些不能被搜索的关键字会被放在一个黑名单当中,黑名单每天晚上更新一次。当用户搜索时,会检查当前关键字在不在黑名单当中,如果在,则提示不能搜索。实现代码如下:
import java.util.Map; import com.ifeve.book.forkjoin.CopyOnWriteMap; /** * 黑名单服务 * * @author fangtengfei * */ public class BlackListServiceImpl { private static CopyOnWriteMap<String, Boolean> blackListMap = new CopyOnWriteMap<String, Boolean>( 1000); public static boolean isBlackList(String id) { return blackListMap.get(id) == null ? false : true; } public static void addBlackList(String id) { blackListMap.put(id, Boolean.TRUE); } /** * 批量添加黑名单 * * @param ids */ public static void addBlackList(Map<String,Boolean> ids) { blackListMap.putAll(ids); } }
代码很简单,但是使用CopyOnWriteMap需要注意两件事情:
1. 减少扩容开销。根据实际需要,初始化CopyOnWriteMap的大小,避免写时CopyOnWriteMap扩容的开销。
2. 使用批量添加。因为每次添加,容器每次都会进行复制,所以减少添加次数,可以减少容器的复制次数。如使用上面代码里的addBlackList方法。
CopyOnWrite的缺点
CopyOnWrite容器有很多优点,但是同时也存在两个问题,即内存占用问题和数据一致性问题。所以在开发的时候需要注意一下。
内存占用问题。因为CopyOnWrite的写时复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,旧的对象和新写入的对象(注意:在复制的时候只是复制容器里的引用,只是在写的时候会创建新对象添加到新容器里,而旧容器的对象还在使用,所以有两份对象内存)。如果这些对象占用的内存比较大,比如说200M左右,那么再写入100M数据进去,内存就会占用300M,那么这个时候很有可能造成频繁的Yong GC和Full GC。之前我们系统中使用了一个服务由于每晚使用CopyOnWrite机制更新大对象,造成了每晚15秒的Full GC,应用响应时间也随之变长。
针对内存占用问题,可以通过压缩容器中的元素的方法来减少大对象的内存消耗,比如,如果元素全是10进制的数字,可以考虑把它压缩成36进制或64进制。或者不使用CopyOnWrite容器,而使用其他的并发容器,如ConcurrentHashMap。
数据一致性问题。CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器。