zoukankan      html  css  js  c++  java
  • A New Discrete Particle Swarm Optimization Algorithm

    题目:一种新的离散粒子群优化算法

    中文摘要

          粒子群优化算法在许多优化问题上表现得非常好。粒子群优化算法的缺点之一是假设算法中的变量为连续变量。本文提出一个新的粒子群优化算法,能够优化离散变量。这个新算法被称为整数和分类粒子群优化算法,该算法融合了分布估计算法的思想,即粒子代表概率分布而不是解的值,并且PSO更新修改了概率分布。本文描述了该算法,并将其性能与其他离散PSO算法进行了比较。实验表明,该算法比其他离散PSO算法要好 。

    中文引言

          离散优化问题,如贝叶斯网络中的特征选择或推理,是一组重要且具有挑战性的问题。这些问题不同于连续问题,因为每个变量的状态是有限个。在整数问题的例子中,变量被限制为一组整数值。对于此类问题,相邻值之间存在一种关系。一般而言,整数中存在一种隐式排序:差异较大的整数被认为是相距较远的整数。
          虽然整数问题是离散问题的子集,但也有其他类型的问题。例如,在贝叶斯推理中,目标是找到一个能很好解释一组观察结果的状态集。在这里,相邻状态之间可能不存在直接关系或梯度。例如,假设状态集是悲伤、恐惧、愤怒、喜悦和厌恶的情绪。虽然在优化过程中这些状态可以用整数表示,但这种编码的值之间没有真正的有序关系。我们把这类问题称为分类优化问题。
          注意:这里的顺序关系就是数学中的大小关系。
          粒子群优化是一种相对简单的搜索算法,适用于各种各样的优化问题。然而,原始PSO算法无法处理离散问题,如上述问题,因为其速度更新需要连续的解值。目前,虽然离散的定义在应用程序和算法之间有很大差异, 但是PSO算法的几个变体允许离散值。本文正式给出离散问题的定义,并针对这问题提出了一种新的粒子群优化算法,称为整数和分类粒子群优化算法(ICPSO)。然后将ICPSO与文献中提出的其他离散PSO变体进行比较。
          ICPSO算法的目标是保持对连续PSO的扩展尽可能简单,并保留大部分原始语义,同时解决其他离散PSO算法的一些潜在缺陷。为了实现这一点,我们改变粒子位置的表示形式,以便粒子的每个属性都是其可能值的分布,而不是值本身。这类似于分布估计算法(EDA),其中使用一组拟合个体生成分布向量,然后生成拟合解。ICPSO与EDAs的不同之处在于,该算法具有多个分布向量,这些分布向量使用PSO更新公式进行更新。
          对于ICPSO,评价粒子变为从这些分布中抽取候选解并计算其适应度的任务。ICPSO还允许使用原始PSO更新公式,避免了可能解值的隐式排序相关的问题。另外,每当产生一个全局最优样本时,ICPSO会修改全局最优解和局部最优解的分布。这使得分布偏向于产生的最优样本,同时仍然允许搜索空间的探索。

    传统PSO算法

    --后续补充

  • 相关阅读:
    poj 1860 Currency Exchange(最短路径的应用)
    poj 2965 The Pilots Brothers' refrigerator
    zoj 1827 the game of 31 (有限制的博弈论)
    poj 3295 Tautology (构造法)
    poj 1753 Flip Game(枚举)
    poj 2109 (贪心)
    poj 1328(贪心)
    Qt 对单个控件美化
    Qt 4基础
    Bash Shell
  • 原文地址:https://www.cnblogs.com/mysterygust/p/15701341.html
Copyright © 2011-2022 走看看