zoukankan      html  css  js  c++  java
  • 解SVD和最小二乘clapack

    用Intel MKL解SVD和最小二乘

       

     

    201042日星期五 

     

    这几天赶着移植算法,要把MATLAB程序用C++改写。涉及6000多维的方阵运算,幸亏笔记本上2008R264位的,64MATLAB还能算出数来,32位电脑上的MATLAB直接就存储空间不足罢工了。

     

    研究了几个C++下矩阵运算的库,boost带的BLAS太矬,lapackclapackcpplapack全是在Linux上的设置多,讲windows下配置的太少,都得用Makefile慢慢编译……搞科学计算的牛人都是用Linux,可对我这种半路出家的矬人实在是过于高深,再说我也懒得去研究这些,只想找个立刻就能用起来的。那么就IntelMKL了。于是就装个Intel C Plus Plus Compiler Professional 11.1.060,和VS2008集成得很好。

     

    啃路径下自带的userguide.pdf配置路径和库文件,然后按照讲解好第一个例子,增强了信心(我最腻味那种为了实现一个功能让我配置半天甚至几天的玩意);

     

    然后随着移植算法,啃3000页的mklman.pdf,虽然也实现了矩阵乘除、解线性方程组之类简单功能,但是毕竟都是针对Fortran语言的为主,看起来跌跌撞撞的。连随软件的例子也净是.f的,你这好像是C++编译器啊,Intel大哥-_-!

    当然咯,我能看懂这些功能,少不了古狗别人的代码示例,这里特别感谢http://blog.sina.com.cn/s/blog_4840fe2a0100gjxz.html,刚开始起步时看到能用的代码对我这样的菜鸟是在是太重要了)。

     

    后面麻烦就来了,就想把用SVD分解来解最小二乘问题的函数dgelsd用起来,就费了劲了,10几个参数mklman.pdf里讲的可以说是乱七八糟,云山雾罩,为了设置一个参数要调另外的函数,而且一会是上文,一会是后面附录的。昨晚看到上午就是没用起来。试图看看clapack里的例子,也因为愚钝没看懂。结果古狗到Intel自己的网站,结果发现美观清晰的C代码,大喜,copy下来一运行,还真用起来了,那些之前不明白的参数一下就懂了。唉后来一看,原来只提供在线版浏览,没随软件安装。唉,这比那个3000页的pdf实用多了!MD,真正的好东西咋不提供pdf啊……

     

    Intel官网:

    http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/

    放到下面other里面了-.-!,我当时也路过过这里,结果看了上面的,也看了下面的,就独独忘了中间这个……

    Intel Math Kernel Library LAPACK Examples [HTML]

     

     

    下面就是我“千辛万苦”(其实不到半天)找到的dgelsd用法。清晰,规范……不转帖不足以表示我的感激之情!

    http://software.intel.com/sites/products/documentation/hpc/mkl/lapack/mkl_lapack_examples/index.htm

     

    开头加一下”mkl.h”,再在项目属性的链接器里把几个依赖的lib加上,就可以运行了。

     

    /*******************************************************************************
    *  Copyright (C) 2009-2010 Intel Corporation. All Rights Reserved.
    *  The information and material ("Material") provided below is owned by Intel
    *  Corporation or its suppliers or licensors, and title to such Material remains
    *  with Intel Corporation or its suppliers or licensors. The Material contains
    *  proprietary information of Intel or its suppliers and licensors. The Material
    *  is protected by worldwide copyright laws and treaty provisions. No part of
    *  the Material may be copied, reproduced, published, uploaded, posted,
    *  transmitted, or distributed in any way without Intel’s prior express written
    *  permission. No license under any patent, copyright or other intellectual
    *  property rights in the Material is granted to or conferred upon you, either
    *  expressly, by implication, inducement, estoppel or otherwise. Any license
    *  under such intellectual property rights must be express and approved by Intel
    *  in writing.
    *
    ********************************************************************************
    */
    /*
       DGELSD Example.
       ==============

       Program computes the minimum norm-solution to a real linear least squares
       problem using the singular value decomposition of A,
       where A is the coefficient matrix:

         0.12  -8.19   7.69  -2.26  -4.71
        -6.91   2.22  -5.12  -9.08   9.96
        -3.33  -8.94  -6.72  -4.40  -9.98
         3.97   3.33  -2.74  -7.92  -3.20

       and B is the right-hand side matrix:

         7.30   0.47  -6.28
         1.33   6.58  -3.42
         2.68  -1.71   3.46
        -9.62  -0.79   0.41

       Description.
       ============

       The routine computes the minimum-norm solution to a real linear least
       squares problem: minimize ||b – A*x|| using the singular value
       decomposition (SVD) of A. A is an m-by-n matrix which may be rank-deficient.

       Several right hand side vectors b and solution vectors x can be handled
       in a single call; they are stored as the columns of the m-by-nrhs right
       hand side matrix B and the n-by-nrhs solution matrix X.

       The effective rank of A is determined by treating as zero those singular
       values which are less than rcond times the largest singular value.

       Example Program Results.
       ========================

     DGELSD Example Program Results

     Minimum norm solution
      -0.69  -0.24   0.06
      -0.80  -0.08   0.21
       0.38   0.12  -0.65
       0.29  -0.24   0.42
       0.29   0.35  -0.30

     Effective rank =      4

     Singular values
      18.66  15.99  10.01   8.51
    */
    #include <stdlib.h>
    #include <stdio.h>

    /* DGELSD prototype */
    extern void dgelsd( int* m, int* n, int* nrhs, double* a, int
    * lda,
                    
    double* b, int* ldb, double* s, double* rcond, int
    * rank,
                    
    double* work, int* lwork, int* iwork, int
    * info );
    /* Auxiliary routines prototypes */
    extern void print_matrix( char* desc, int m, int n, double* a, int
     lda );

    /* Parameters */
    #define M 4
    #define N 5
    #define NRHS 3
    #define LDA M
    #define LDB N

    /* Main program */
    int
     main() {
            
    /* Locals */
            int
     m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info, lwork, rank;
            
    /* Negative rcond means using default (machine precision) value */
            double rcond = -1.0
    ;
            
    double
     wkopt;
            
    double
    * work;
            
    /* Local arrays */
            /* iwork dimension should be at least 3*min(m,n)*nlvl + 11*min(m,n),
                    where nlvl = max( 0, int( log_2( min(m,n)/(smlsiz+1) ) )+1 )
                    and smlsiz = 25 */
            int iwork[3*M*0+11
    *M];
            
    double
     s[M];
            
    double
     a[LDA*N] = {
                
    0.12, -6.91, -3.33,  3.97
    ,
               -
    8.19,  2.22, -8.94,  3.33
    ,
                
    7.69, -5.12, -6.72, -2.74
    ,
               -
    2.26, -9.08, -4.40, -7.92
    ,
               -
    4.71,  9.96, -9.98, -3.20
            };
            
    double
     b[LDB*NRHS] = {
                
    7.30,  1.33,  2.68, -9.62,  0.00
    ,
                
    0.47,  6.58, -1.71, -0.79,  0.00
    ,
               -
    6.28, -3.42,  3.46,  0.41,  0.00
            };
            
    /* Executable statements */
            printf( " DGELSD Example Program Results\n"
     );
            
    /* Query and allocate the optimal workspace */
            lwork = -1
    ;
            dgelsd( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, &wkopt, &lwork,
                            iwork, &info );
            lwork = (
    int
    )wkopt;
            work = (
    double*)malloc( lwork*sizeof(double
    ) );
            
    /* Solve the equations A*X = B */
            dgelsd( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, work, &lwork,
                            iwork, &info );
            
    /* Check for convergence */
            if( info > 0
     ) {
                    printf( 
    "The algorithm computing SVD failed to converge;\n"
     );
                    printf( 
    "the least squares solution could not be computed.\n"
     );
                    exit( 
    1
     );
            }
            
    /* Print minimum norm solution */
            print_matrix( "Minimum norm solution"
    , n, nrhs, b, ldb );
            
    /* Print effective rank */
            printf( "\n Effective rank = %6i\n"
    , rank );
            
    /* Print singular values */
            print_matrix( "Singular values"1, m, s, 1
     );
            
    /* Free workspace */
            free( (void
    *)work );
            exit( 
    0
     );
    /* End of DGELSD Example */

    /* Auxiliary routine: printing a matrix */
    void print_matrix( char* desc, int m, int n, double* a, int
     lda ) {
            
    int
     i, j;
            printf( 
    "\n %s\n"
    , desc );
            
    for( i = 0
    ; i < m; i++ ) {
                    
    for( j = 0; j < n; j++ ) printf( " %6.2f"
    , a[i+j*lda] );
                    printf( 
    "\n"
     );
            }
    }

  • 相关阅读:
    Hello, Fedora.
    Android与Linux分道扬镳
    VIM教程V1.5梁昌泰
    强大的NTFS文件系统
    Linux下的cc与gcc
    g++与gcc的区别
    Fedora下解压缩的相关问题
    The GNU C Reference Manual
    Linux Kbuild文档
    实验一:计算机是怎样工作的
  • 原文地址:https://www.cnblogs.com/mysunnyday/p/2076113.html
Copyright © 2011-2022 走看看