题意:给定一个N,随机从[1,N]里产生一个n,
然后随机产生一个n个数的全排列,求出n的逆序数对的数量并累加ans,
然后随机地取出这个全排列中的一个子序列,重复这个过程,直到为空,求ans在模998244353下的期望
思路:期望仅与长度有关,随手推一下式子
听说有通项公式
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 typedef unsigned int uint; 5 typedef unsigned long long ull; 6 typedef pair<int,int> PII; 7 typedef pair<ll,ll> Pll; 8 typedef vector<int> VI; 9 #define N 110000 10 #define M 1100000 11 #define fi first 12 #define se second 13 #define MP make_pair 14 #define pi acos(-1) 15 #define mem(a,b) memset(a,b,sizeof(a)) 16 #define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++) 17 #define per(i,a,b) for(int i=(int)a;i>=(int)b;i--) 18 #define lowbit(x) x&(-x) 19 #define Rand (rand()*(1<<16)+rand()) 20 #define id(x) ((x)<=B?(x):m-n/(x)+1) 21 #define ls p<<1 22 #define rs p<<1|1 23 24 const ll MOD=998244353,inv2=(MOD+1)/2; 25 double eps=1e-6; 26 ll INF=1e14; 27 28 ll fac[N],inv[N],dp[N],mi[N]; 29 30 ll pw(ll x,ll y) 31 { 32 ll t=1; 33 while(y) 34 { 35 if(y&1) t=t*x%MOD; 36 x=x*x%MOD; 37 y>>=1; 38 } 39 return t; 40 } 41 42 int read() 43 { 44 int v=0,f=1; 45 char c=getchar(); 46 while(c<48||57<c) {if(c=='-') f=-1; c=getchar();} 47 while(48<=c&&c<=57) v=(v<<3)+v+v+c-48,c=getchar(); 48 return v*f; 49 } 50 51 ll calc(ll n) 52 { 53 ll t=n*(n-1)/2; 54 return t*inv2%MOD; 55 } 56 57 ll c(ll n,ll m) 58 { 59 if(n<m||m<0) return 0; 60 ll t=fac[n]*inv[m]%MOD*inv[n-m]%MOD; 61 return t; 62 } 63 64 int main() 65 { 66 //freopen("1.in","r",stdin); 67 //freopen("1.out","w",stdout); 68 int n; 69 fac[0]=1; 70 rep(i,1,3000) fac[i]=fac[i-1]*i%MOD; 71 inv[0]=inv[1]=1; 72 rep(i,2,3000) inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD; 73 rep(i,1,3000) inv[i]=inv[i-1]*inv[i]%MOD; 74 mi[0]=1; 75 rep(i,1,3000) mi[i]=mi[i-1]*inv2%MOD; 76 rep(i,1,3000) 77 { 78 ll t=0; 79 rep(j,1,i-1) t=(t+dp[j]*c(i,j)%MOD*mi[i]%MOD)%MOD; 80 dp[i]=(calc(i)+t)%MOD*pw(1ll-mi[i]+MOD,MOD-2)%MOD; 81 } 82 rep(i,1,3000) dp[i]=(dp[i]+dp[i-1])%MOD; 83 inv[0]=inv[1]=1; 84 rep(i,2,3000) inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD; 85 while(scanf("%d",&n)!=EOF) 86 { 87 printf("%I64d ",dp[n]*inv[n]%MOD); 88 } 89 return 0; 90 }