zoukankan      html  css  js  c++  java
  • Virtual Contests

    Problem Description

    We give the following inductive definition of a “regular brackets” sequence:
    ● the empty sequence is a regular brackets sequence,
    ● if s is a regular brackets sequence, then (s) are regular brackets sequences, and
    ● if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    ● no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:
    (), (()), ()(), ()(())
    while the following character sequences are not:
    (, ), )(, ((), ((()

    Now we want to construct a regular brackets sequence of length n, how many regular brackets sequences we can get when the front several brackets are given already.

    Input
    Multi test cases (about 2000), every case occupies two lines.
    The first line contains an integer n.
    Then second line contains a string str which indicates the front several brackets.

    Please process to the end of file.

    [Technical Specification]
    1≤n≤1000000
    str contains only '(' and ')' and length of str is larger than 0 and no more than n.

    Output
    For each case,output answer % 1000000007 in a single line.

    Sample Input
    4
    ()
    4
    (
    6
    ()

    Sample Output
    1
    2
    2

    Hint
    For the first case the only regular sequence is ()().
    For the second case regular sequences are (()) and ()().
    For the third case regular sequences are ()()() and ()(()).

    Source
    BestCoder Round #32

    Recommend
    hujie

     1 /*************************************************************************
     2   > File Name: hdu5184.cpp
     3   > Author: Henry Chen
     4   > Mail: 390989083@qq.com 
     5   > Created Time: 日  9/21 22:52:52 2020
     6  ************************************************************************/
     7 
     8 #include<bits/stdc++.h>
     9 using namespace std;
    10 const int mod = 1000000007;
    11 const int N = 1000004;
    12 long long fac[N],ny[N];
    13 char c[N];
    14 long long inv(long long a,long long m)
    15 {
    16  long long p = 1,q = 0,b = m,c,d;
    17  while(b > 0)
    18  {
    19   c = a / b;
    20   d = a; 
    21   a = b; 
    22   b = d % b;
    23   d = p; 
    24   p = q; 
    25   q = d - c * q;
    26  }
    27  return p < 0 ? p+m:p;
    28 }
    29 long long C(int n,int x)
    30 {
    31  if(x < 0||n < 0||n < x)
    32  {
    33   return 0;
    34  }
    35  return fac[n] * ny[x] % mod * ny[n-x] % mod;
    36 }
    37 int main()
    38 {
    39  int n;
    40  fac[0] = 1;
    41  ny[0] = inv(1,mod);
    42  for(int i = 1;i < N;i++)
    43  {
    44   fac[i] = fac[i-1]*i%mod;
    45   ny[i] = inv(fac[i],mod);
    46  }
    47  while(~scanf("%d%s",&n,&c))
    48  {
    49   if(n & 1) 
    50   {
    51    printf("%d
    ",0);
    52    continue;
    53   }
    54   int a1 = 0;
    55   int a2 = 0;
    56   int b = 0;
    57   for(int i = 0;i < strlen(c);i++)
    58   {
    59    if(c[i] == '(')
    60    {
    61     a1++;
    62    }
    63    else 
    64    {
    65     a2++;
    66    }
    67    if(a2 > a1) 
    68    {
    69     printf("%d
    ",0);
    70     b = 1;
    71     break;
    72    }
    73   }
    74   if(b) 
    75   {
    76    continue;
    77   }
    78   if(a2 > a1) 
    79   {
    80    printf("%d
    ",0);
    81    continue;
    82   }
    83   long long ans = (C(n-a1-a2,n/2-a1)+mod-C(n-a1-a2,n/2-a1-1))%mod;
    84   printf("%lld
    ",ans);
    85  }
    86  return 0;
    87 }
  • 相关阅读:
    Keras安装
    sql根据查询顺序返回结果
    @Configuration @Bean
    SQL高级优化系列
    数据结构与算法系列(二)-- 算法
    数据结构与算法系列(一)-- 数据结构
    Golang中Label的用法
    日志收集系统系列(五)之LogTransfer
    日志收集系统系列(四)之LogAgent优化
    日志收集系统系列(三)之LogAgent
  • 原文地址:https://www.cnblogs.com/mzyy1001/p/13721730.html
Copyright © 2011-2022 走看看