zoukankan      html  css  js  c++  java
  • HashMap实现原理及源码分析之JDK8

    继续上回HashMap的学习 HashMap实现原理及源码分析之JDK7

    转载 Java8源码-HashMap  基于JDK8的HashMap源码解析  【jdk1.8】HashMap源码分析

    一、HashMap简单介绍

    首先看下HashMap在JDK8下数据结构:

    JDK 8 之前: 

    JDK 8 之前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。
    当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,极端情况下HashMap 就相当于一个单链表,假如单链表有 n 个元素,遍历的时间复杂度就是 O(n),完全失去了它的优势。
    JDK 8 :
    JDK7与JDK8中HashMap实现的最大区别就是对于冲突的处理方法。JDK 1.8 中引入了红黑树(当链表长度大于8时,链表转化为红黑树,查找时间复杂度为 O(logn)),用 数组+链表+红黑树 的结构来优化这个问题。

      通常,我们把数组中的每个节点(Node<K,V>)称为,每次往桶里添加key-value键值对时,首先计算键值对中 key的hash值,根据hash值确定插入到数组的位置,如果数组里面有数据,就会发生hash冲突,此时按照尾插入法(JDK7及以前是头插入法),添加key-value键值对到同一hash值的元素的后面,链表就这样形成了。当链表长度超过8(TREEIFY_THRESHOLD)时,链表就转换为红黑树了。我们通常将桶连接的链表/红黑树中的每个元素称为bin

    二、HashMap源码分析

    1、HashMap类的顶部注释

    HashMap是Map接口基于哈希表的实现。这种实现提供了所有可选的Map操作,并允许key和value为null(除了HashMap是unsynchronized的和允许使用null外,HashMap和HashTable大致相同。)。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
    
    此实现假设哈希函数在桶内适当地分布元素,为基本实现(get 和 put)提供了稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。如果遍历操作很重要,就不要把初始化容量initial capacity设置得太高(或将加载因子load factor设置得太低),否则会严重降低遍历的效率。
    
    HashMap有两个影响性能的重要参数:初始化容量initial capacity加载因子load factor。容量是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。initial capacity*load factor就是当前允许的最大元素数目,超过initial capacity*load factor之后,HashMap就会进行rehashed操作来进行扩容,扩容后的的容量为之前的倍。
    
    通常,默认加载因子 (0.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少rehash操作次数。如果初始容量大于最大条目数除以加载因子(capacity > size/factor),则不会发生rehash 操作。
    
    如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。
    
    注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的任何操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedMap 方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示: 
    Map m = Collections.synchronizedMap(new HashMap(…));
    
    由所有此类的“collection 视图方法”所返回的迭代器都是fail-fast 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的remove方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。
    
    注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测bug。
    
    此类是 Java Collections Framework 的成员。
    
    @author Doug Lea 
    @author Josh Bloch 
    @author Arthur van Hoff 
    @author Neal Gafter 
    @see Object#hashCode() 
    @see Collection 
    @see Map 
    @see TreeMap 
    @see Hashtable 
    @since 1.2

    从上面内容可以总结:

    • 底层:HashMap是Map接口基于哈希表的实现。
    • 是否允许null:HashMap允许key和value为null(一个key值,多个value值为null)。
    • 是否有序:HashMap不保证映射的顺序,特别是它不保证该顺序恒久不变。
    • 何时rehash:超出当前允许的最大容量。initial capacity*load factor就是当前允许的最大元素数目,超过initial capacity*load factor之后,HashMap就会进行rehashed操作来进行扩容,扩容后的的容量为之前的两倍。
    • 初始化容量对性能的影响:不应设置地太小,设置地小虽然可以节省空间,但会频繁地进行rehash操作。rehash会影响性能。总结:小了会增大时间开销(频繁rehash);大了会增大空间开销(占用了更多空间)和时间开销(影响遍历)。
    • 加载因子对性能的影响:加载因子过高虽然减少了空间开销,但同时也增加了查询成本。0.75是个折中的选择。总结:小了会增大时间开销(频繁rehash);大了会也增大时间开销(影响遍历)。
    • 是否同步:HashMap不是同步的。
    • 迭代器:迭代器是fast-fail的。

    2、HashMap类继承关系图:(idea工具:ctrl+alt+u)

    HashMap类的定义:

    public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable 
    • HashMap<K,V>:HashMap是以key-value形式存储数据的。
    • extends AbstractMap<K,V>:继承了AbstractMap,大大减少了实现Map接口时需要的工作量。
    • implements Map<K,V>:实现了Map,提供了所有可选的Map操作。
    • implements Cloneable:表明其可以调用克隆方法clone()来返回实例的field-for-field拷贝。
    • implements Serializable:表明该类是可以序列化的。

    3、类成员变量:

    /**
     * 默认初始化容量,值为16
     * 必须是2的n次幂.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
    
    /**
     * 最大容量, 容量不能超出这个值。如果一个更大的初始化容量在构造函数中被指定,将被MAXIMUM_CAPACITY替换.
     * 必须是2的倍数。最大容量为1<<30,即2的30次方。
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    /**
     * 默认的加载因子0.75。
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    /**
     * 将链表转化为红黑树的临界值。
     * 当添加一个元素被添加到有至少TREEIFY_THRESHOLD个节点的桶中,桶中链表将被转化为树形结构。
     * 临界值最小为8
     */
    static final int TREEIFY_THRESHOLD = 8;
    
    /**
     * 恢复成链式结构的桶大小临界值
     * 小于TREEIFY_THRESHOLD,临界值最大为6
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    
    /**
     * 桶可能被转化为树形结构的最小容量。当哈希表的大小超过这个阈值,才会把链式结构转化成树型结构,否则仅采取扩容来尝试减少冲突。
     * 应该至少4*TREEIFY_THRESHOLD来避免扩容和树形结构化之间的冲突。
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    
    /**
     * 存储键值对的数组,一般是2的幂
     */
    transient Node<K,V>[] table;
    
    /**
     * 键值对缓存,它们的映射关系集合保存在entrySet中。即使Key在外部修改导致hashCode变化,缓存中还可以找到映射关系
     */
    transient Set<Map.Entry<K,V>> entrySet;
    
    /**
     * 键值对的实际个数
     */
    transient int size;
    
    /**
     * 记录HashMap被修改结构的次数。
     * 修改包括改变键值对的个数或者修改内部结构,比如rehash
     * 这个域被用作HashMap的迭代器的fail-fast机制中(参考ConcurrentModificationException)
     */
    transient int modCount;
    
    /**
     * 扩容的临界值,通过capacity * load factor可以计算出来。超过这个值HashMap将进行扩容
     * @serial
     */
    
    int threshold;
    
    /**
     * 加载因子
     *
     * @serial
     */
    final float loadFactor;

     4、静态内部类Node:

    /**
     * HashMap的节点类型。既是HashMap底层数组的组成元素,又是每个单向链表的组成元素
     */
    static class Node<K,V> implements Map.Entry<K,V> {
            //key的哈希值
        final int hash;
        final K key;
        V value;
            //指向下个节点的引用
        Node<K,V> next;
    
            //构造函数
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
    
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
    
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
    
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    5、核心方法:

     get(Object key)方法

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    从源码中可以看到, get(Object key)方法分为3步:

    • 通过hash(Object key)方法计算key的哈希值hash。
    • 通过getNode(int hash, Object key)方法获取node。
    • 如果node为null,返回null,否则返回node.value。

    先来看看哈希值是如何计算的:

    hash(Object key) 方法:

      增加、删除、查找键值对时,定位到哈希桶数组是很关键的一步,对应的公式是:(n - 1) & hash。其中 n = 数组长度,hash = hash(Object key) 的结果值。

     * 计算key的哈希值。
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    从代码中可以看到,计算位置时可分为三步:

    • 第一步,取key的hashCode;
    • 第二步,key的hashCode高16位异或低16位;
    • 第三步,将第一步和第二部得到的结果进行取模运算;

    看到这里有个疑问,为什么要做异或运算?

      设想一下,如果n很小,假设为16的话,那么n-1即为15(0000 0000 0000 0000 0000 0000 0000 1111),这样的值如果跟hashCode()直接做与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,这样很容易造成碰撞,所以把高低位都参与到计算中,从而解决了这个问题,而且也不会有太大的开销。

    看完哈希值是如何计算之后,看看如何通过key和hash获取node

    getNode(int hash, Object key) 方法:

    /**
     * 根据key的哈希值和key获取对应的节点
     * 
     * @param hash 指定参数key的哈希值
     * @param key 指定参数key
     * @return 返回node,如果没有则返回null
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //如果哈希表不为空,而且key对应的桶上不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //如果桶中的第一个节点就和指定参数hash和key匹配上了
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                //返回桶中的第一个节点
                return first;
            //如果桶中的第一个节点没有匹配上,而且有后续节点
            if ((e = first.next) != null) {
                //如果当前的桶采用红黑树,则调用红黑树的get方法去获取节点
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //如果当前的桶不采用红黑树,即桶中节点结构为链式结构
                do {
                    //遍历链表,直到key匹配
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //如果哈希表为空,或者没有找到节点,返回null
        return null;
    }

    getNode方法又可分为以下几个步骤:

    • 如果哈希表为空,或key对应的桶为空,返回null。
    • 如果桶中的第一个节点就和指定参数hash和key匹配上了,返回这个节点。
    • 如果桶中的第一个节点没有匹配上,而且有后续节点:
      • 如果当前的桶采用红黑树,则调用红黑树的get方法去获取节点。
      • 如果当前的桶不采用红黑树,即桶中节点结构为链式结构,遍历链表,直到key匹配。
    • 找到节点返回节点,否则返回null。

    put( K key, V value)方法

    /**
     * 将指定参数key和指定参数value插入map中,如果key已经存在,那就替换key对应的value
     * 
     * @param key 指定key
     * @param value 指定value
     * @return 如果value被替换,则返回旧的value,否则返回null。当然,可能key对应的value就是null。
     */
    public V put(K key, V value) {
        //putVal方法的实现就在下面
        return putVal(hash(key), key, value, false, true);
    }

    从源码中可以看到,put(K key, V value)可以分为三个步骤:

    • 通过hash(Object key)方法计算key的哈希值。
    • 通过putVal(hash(key), key, value, false, true)方法实现功能。
    • 返回putVal方法返回的结果。

    哈希值是如何计算的上面已经写了。下面看看putVal方法是如何实现的。

    putVal( int hash, K key, V value, boolean onlyIfAbsent,boolean evict) 方法:

    /**
     * Map.put和其他相关方法的实现需要的方法
     * 
     * @param hash 指定参数key的哈希值
     * @param key 指定参数key
     * @param value 指定参数value
     * @param onlyIfAbsent 如果为true,即使指定参数key在map中已经存在,也不会替换value
     * @param evict 如果为false,数组table在创建模式中
     * @return 如果value被替换,则返回旧的value,否则返回null。当然,可能key对应的value就是null。
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果哈希表为空,调用resize()创建一个哈希表,并用变量n记录哈希表长度
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //如果指定参数hash在表中没有对应的桶,即为没有碰撞
        if ((p = tab[i = (n - 1) & hash]) == null)
            //直接将键值对插入到map中即可
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //如果碰撞了,且桶中的第一个节点就匹配了
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //将桶中的第一个节点记录起来
                e = p;
            //如果桶中的第一个节点没有匹配上,且桶内为红黑树结构,则调用红黑树对应的方法插入键值对
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //不是红黑树结构,那么就肯定是链式结构
            else {
                //遍历链式结构
                for (int binCount = 0; ; ++binCount) {
                    //如果到了链表尾部
                    if ((e = p.next) == null) {
                        //在链表尾部插入键值对
                        p.next = newNode(hash, key, value, null);
                        //如果链的长度大于TREEIFY_THRESHOLD这个临界值,则把链变为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        //跳出循环
                        break;
                    }
                    //如果找到了重复的key,判断链表中结点的key值与插入的元素的key值是否相等,如果相等,跳出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                    p = e;
                }
            }
            //如果key映射的节点不为null
            if (e != null) { // existing mapping for key
                //记录节点的vlaue
                V oldValue = e.value;
                //如果onlyIfAbsent为false,或者oldValue为null
                if (!onlyIfAbsent || oldValue == null)
                    //替换value
                    e.value = value;
                //访问后回调
                afterNodeAccess(e);
                //返回节点的旧值
                return oldValue;
            }
        }
        //结构型修改次数+1
        ++modCount;
        //判断是否需要扩容
        if (++size > threshold)
            resize();
        //插入后回调
        afterNodeInsertion(evict);
        return null;
    }

    put(K key, V value)方法操作流程图如下:

    putVal方法可以分为下面的几个步骤:

    • 如果哈希表为空,调用resize()创建一个哈希表。
    • 如果指定参数hash在表中没有对应的桶,即为没有碰撞,直接将键值对插入到哈希表中即可。
    • 如果有碰撞,遍历桶,找到key映射的节点:
      • 桶中的第一个节点就匹配了,将桶中的第一个节点记录起来。
      • 如果桶中的第一个节点没有匹配,且桶中结构为红黑树,则调用红黑树对应的方法插入键值对。
      • 如果不是红黑树,那么就肯定是链表。遍历链表,如果找到了key映射的节点,就记录这个节点,退出循环。如果没有找到,在链表尾部插入节点。插入后,如果链的长度大于TREEIFY_THRESHOLD这个临界值,则使用treeifyBin方法把链表转为红黑树。
    • 如果找到了key映射的节点,且节点不为null:
      • 记录节点的vlaue。
      • 如果参数onlyIfAbsent为false,或者oldValue为null,替换value,否则不替换。
      • 返回记录下来的节点的value。
    • 节点插入到数组后size会加1,这时要检查size是否大于临界值threshold,如果大于会使用resize方法进行扩容。

    resize()方法:

      向hashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,hashMap就需要扩大数组的长度,以便能装入更多的元素。当然数组是无法自动扩容的,扩容方法使用一个新的数组代替已有的容量小的数组。

      resize方法非常巧妙,因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。

    /**
     * 对table进行初始化或者扩容。
     * 如果table为null,则对table进行初始化
     * 如果对table扩容,因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。
     */
    final Node<K,V>[] resize() {
        //新建oldTab数组保存扩容前的数组table
        Node<K,V>[] oldTab = table;
        //使用变量oldCap保存扩容前table的容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //使用变量oldThr保存扩容前的临界值
        int oldThr = threshold;
        int newCap, newThr = 0;
        //如果扩容前的容量 > 0
        if (oldCap > 0) {
            //如果当前(扩容前)容量>=MAXIMUM_CAPACITY
            if (oldCap >= MAXIMUM_CAPACITY) {
                //扩容临界值提高到正无穷
                threshold = Integer.MAX_VALUE;
                //无法进行扩容,返回原来的数组
                return oldTab;
            }
            //如果当前容量的两倍小于MAXIMUM_CAPACITY且当前的容量大于DEFAULT_INITIAL_CAPACITY
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)
                //临界值变为原来的2倍
                newThr = oldThr << 1; 
        }//如果旧容量 <= 0,而且旧临界值 > 0
        else if (oldThr > 0) 
            //数组的新容量设置为老数组的扩容临界值
            newCap = oldThr;
        else {//如果旧容量 <= 0,且旧临界值 <= 0,新容量扩充为默认初始化容量,新临界值为默认加载因子*默认容量(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY)
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {//在上面的条件判断中,只有oldThr > 0成立时,newThr == 0
            //ft为临时临界值,下面会确定这个临界值是否合法,如果合法,那就是真正的临界值
            float ft = (float)newCap * loadFactor;
            //当新容量< MAXIMUM_CAPACITY且ft < (float)MAXIMUM_CAPACITY,新的临界值为ft,否则为Integer.MAX_VALUE
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //将扩容后hashMap的临界值设置为newThr
        threshold = newThr;
        //创建新的table,初始化容量为newCap
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //修改hashMap的table为新建的newTab
        table = newTab;
        //如果旧table不为空,将旧table中的元素复制到新的table中
        if (oldTab != null) {
            //遍历旧哈希表的每个桶,将旧哈希表中的桶复制到新的哈希表中
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //如果旧桶不为null,使用e记录旧桶
                if ((e = oldTab[j]) != null) {
                    //将旧桶置为null
                    oldTab[j] = null;
                    //如果旧桶中只有一个node
                    if (e.next == null)
                        //将e也就是oldTab[j]放入newTab中e.hash & (newCap - 1)的位置
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果旧桶中的结构为红黑树
                    else if (e instanceof TreeNode)
                        //将树中的node分离
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { //lo == low, hi == high。由于数组翻倍了,相当于低位是老的数组,高位是新的一半。
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //遍历整个链表中的节点
                        do {
                            next = e.next;
                            // 将桶中的元素按照hash值扩容之后新容量的高位的末位是否为0来判断是否分割,完成rehash
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                // 低位
    if (loTail != null) { loTail.next = null; newTab[j] = loHead; }
    // 高位(新数组一半的位置)
    if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } }
       // 返回新数组 
    return newTab; }

    如下图(桶中的元素被分割了)

     

    从代码中可以看到,扩容很耗性能。所以在使用HashMap的时候,先估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。看完代码后,可以将resize的步骤总结为:

    • 计算扩容后的容量,临界值。
    • 将hashMap的临界值修改为扩容后的临界值
    • 根据扩容后的容量新建数组,然后将hashMap的table的引用指向新数组。
    • 将旧数组的元素复制到table中。

     remove(Object key)方法:

    /**
     * 删除hashMap中key映射的node
     *
     * @param  key 参数key
     * @return 如果没有映射到node,返回null,否则返回对应的value。
     */
    public V remove(Object key) {
        Node<K,V> e;
        //根据key来删除node。removeNode方法的具体实现在下面
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    从源码中可以看到,remove方法的实现可以分为三个步骤:

    • 通过hash(Object key)方法计算key的哈希值。
    • 通过removeNode方法实现功能。
    • 返回被删除的node的value。

    下面看看removeNode方法的具体实现

    removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) 方法:

    /**
     * Map.remove和相关方法的实现需要的方法
     * 删除node
     * 
     * @param hash key的哈希值
     * @param key 参数key
     * @param value 如果matchValue为true,则value也作为确定被删除的node的条件之一,否则忽略
     * @param matchValue 如果为true,则value也作为确定被删除的node的条件之一
     * @param movable 如果为false,删除node时不会删除其他node
     * @return 返回被删除的node,如果没有node被删除,则返回null(针对红黑树的删除方法)
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //如果数组table不为空且key映射到的桶不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {        Node<K,V> node = null, e; K k; V v;
            //如果桶上第一个node的就是要删除的node
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //记录桶上第一个node
                node = p;
            else if ((e = p.next) != null) {//如果桶内不止一个node
                if (p instanceof TreeNode)//如果桶内的结构为红黑树
                    //记录key映射到的node
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {//如果桶内的结构为链表
                    do {//遍历链表,找到key映射到的node
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            //记录key映射到的node
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //如果得到的node不为null且(matchValue为false||node.value和参数value匹配)
            if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
                //如果桶内的结构为红黑树
                if (node instanceof TreeNode)
                    //使用红黑树的删除方法删除node
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)//如果桶的第一个node的就是要删除的node
                    //删除node
                    tab[index] = node.next;
                else//如果桶内的结构为链表,使用链表删除元素的方式删除node
                    p.next = node.next;
                //结构性修改次数+1
                ++modCount;
                //哈希表大小-1
                --size;
                afterNodeRemoval(node);
                //返回被删除的node
                return node;
            }
        }
        //如果数组table为空或key映射到的桶为空,返回null。
        return null;
    }

    看完代码后,可以将removeNode方法的步骤总结为

    • 如果数组table为空或key映射到的桶为空,返回null。
    • 如果key映射到的桶上第一个node的就是要删除的node,记录下来。
    • 如果桶内不止一个node,且桶内的结构为红黑树,记录key映射到的node。
    • 桶内的结构不为红黑树,那么桶内的结构就肯定为链表,遍历链表,找到key映射到的node,记录下来。
    • 如果被记录下来的node不为null,删除node,size-1被删除。
    • 返回被删除的node。

    tableSizeFor(int cap)方法:

    /**
     * 返回大于等于cap的最小的二次幂数值。
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    6.构造函数:

    HashMap(int initialCapacity, float loadFactor) 方法:

    /**
     * 使用指定的初始化容量initial capacity 和加载因子load factor构造一个空HashMap
     *
     * @param  initialCapacity 初始化容量
     * @param  loadFactor      加载因子
     * @throws IllegalArgumentException 如果指定的初始化容量为负数或者加载因子为非正数。
     */
    public HashMap(int initialCapacity, float loadFactor) {
        //初始容量不能小于零
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        //初始容量不能大于最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //填充因子不能小于等于零或者非数字
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        //进行初始化赋值
        this.loadFactor = loadFactor;
       // tableSizeFor(initailCapacity)方法返回大于给定cap的最小2次幂的数值
    this.threshold = tableSizeFor(initialCapacity); }

    HashMap(int initialCapacity) 方法:

    /**
     * 使用指定的初始化容量initial capacity和默认加载因子DEFAULT_LOAD_FACTOR(0.75)构造一个空HashMap
     *
     * @param  initialCapacity 初始化容量
     * @throws IllegalArgumentException 如果指定的初始化容量为负数
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    HashMap() 方法:

    /**
     * 使用指定的初始化容量(16)和默认加载因子DEFAULT_LOAD_FACTOR(0.75)构造一个空HashMap
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    HashMap( Map<? extends K, ? extends V>m) 方法:

    /**
     * 使用指定Map m构造新的HashMap,即将m中的每个元素放入现在的HashMap中。使用指定的初始化容量(16)和默认加载因子DEFAULT_LOAD_FACTOR(0.75)
     * @param   m 指定的map
     * @throws  NullPointerException 如果指定的map是null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    三、总结:

    JDK7 与 JDK8 中关于HashMap的对比:
      结构不同:

    • JDK7 HashMap结构为 数组+链表 的形式。
    • JDK8 HashMap结构为 数组+链表+红黑树 的形式,当桶内元素大于8时,便会树化。

      hash值的计算方式不同

    • JDK7 table在创建hashmap时分配空间。
    • JDK8 在put的时候分配,如果table为空,则为table分配空间。

      发生冲突时:

    • 插入链表操,JDK7是头插法,JDK8是尾插法。

      resize操作:

    • JDK7 需要重新进行index的计算。
    • JDK8 不需要,通过判断相应的位是0还是1,要么依旧是原index,要么是oldCap + 原index。
  • 相关阅读:
    python ratelimit使用
    团队怎样去做技术规划
    分词语义提取工具
    今日头条推荐系统
    要选择做有价值的事情
    总结与规划
    性能使用到极限
    流量运营
    Stanford CoreNLP使用需要注意的一点
    七年总结
  • 原文地址:https://www.cnblogs.com/nananana/p/10397422.html
Copyright © 2011-2022 走看看