zoukankan      html  css  js  c++  java
  • Hdu 3549 Flow Problem(最大流)

    Flow Problem
    Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 14412 Accepted Submission(s): 6859
    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
    Sample Input
    2
    3 2
    1 2 1
    2 3 1
    3 3
    1 2 1
    2 3 1
    1 3 1
    Sample Output
    Case 1: 1
    Case 2: 2
    Author
    HyperHexagon

    /*
    裸题.
    求1~n的最大流.
    多组数据哦.
    */
    #include<iostream>
    #include<cstdio>
    #include<queue>
    #include<cstring>
    #define MAXN 10001
    using namespace std;
    struct data{int v,next,c;}e[MAXN*2];
    int n,m,tot,cut,s=1,max1=1e9,head[MAXN],dis[MAXN];
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
        return x*f;
    }
    void add(int u,int v,int x)
    {
        e[++cut].v=v;
        e[cut].c=x;
        e[cut].next=head[u];
        head[u]=cut;
    }
    int bfs()
    {
        queue<int >q;
        memset(dis,-1,sizeof dis);
        dis[s]=0;
        q.push(s);
        while(!q.empty())
        {
            int u=q.front();q.pop();
            for(int i=head[u];i;i=e[i].next)
            {
                int v=e[i].v;
                if(dis[v]==-1&&e[i].c>0)
                {
                    dis[v]=dis[u]+1;
                    q.push(v);
                }
            }
        }
        return dis[n]!=-1;
    }
    int dfs(int u,int y)
    {
        int rest=0;
        if(u==n) return y;
        for(int i=head[u];i&&rest<y;i=e[i].next)
        {
            int v=e[i].v;
            if(e[i].c>0&&dis[v]==dis[u]+1)
            {
                int x=min(e[i].c,y-rest);
                x=dfs(v,x);
                rest+=x;
                e[i].c-=x;
                e[i^1].c+=x;
            }
        }
        if(!rest) dis[u]=-1;
        return rest;
    }
    int dinic(int s,int t)
    {
        int tot=0;
        while(bfs())
        {
            int ans=dfs(s,max1);
            while(ans){tot+=ans;ans=dfs(s,max1);}
        }
        return tot;
    }
    void Clear()
    {
        cut=1;//2WA
        memset(dis,-1,sizeof dis);
        memset(head,0,sizeof head);
    }
    int main()
    {
        int t,u,v,x;t=read();
        for(int i=1;i<=t;i++)
        {
            n=read();m=read();
            Clear();
            while(m--)
            {
                u=read(),v=read(),x=read();
                add(u,v,x),add(v,u,0);//1WA
            }
            printf("Case %d: %d
    ",i,dinic(1,n));
        }
        return 0;
    }
  • 相关阅读:
    k近邻 KNN
    聚类之k-means
    支持向量机SVM、优化问题、核函数
    [THUSC 2016] 补退选 (Trie树)
    [CQOI2016] 手机号码 (数位dp)
    [CQOI2012] 交换棋子 (费用流)
    [SCOI2016] 背单词 (Trie树)
    [JSOI2009] 球队收益 (费用流)
    [BZOJ1878][SDOI2009] HH的项链 (树状数组)
    [BZOJ2151]种树
  • 原文地址:https://www.cnblogs.com/nancheng58/p/10068141.html
Copyright © 2011-2022 走看看