zoukankan      html  css  js  c++  java
  • Poj 2115 C Looooops(exgcd变式)

    C Looooops
    Time Limit: 1000MS      Memory Limit: 65536K
    Total Submissions: 22704        Accepted: 6251
    Description
    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    statement;
    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k. 
    Input
    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 
    The input is finished by a line containing four zeros. 
    Output
    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 
    Sample Input
    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    Sample Output
    0
    2
    32766
    FOREVER
    Source
    CTU Open 2004
    /*
    exgcd变式.
    要求:(a+c*x)mod2^k=b.
    变形得到:c*xmod2^k=b-a.
    即 c*x=(b-a)mod2^k.
    用同余方程求解.
    (
    mod运算是最"自由"的运算
    符合常见的运算律. 
    )
    */
    #include<iostream>
    #include<cstdio>
    #define LL long long
    using namespace std;
    LL a,b,c,k,x,y;
    LL mi(int x)
    {
        LL tot=1;
        for(int i=1;i<=x;i++)  tot<<=1;
        return tot;
    }
    LL exgcd(LL a,LL b)
    {
        if(!b)
        {
            x=1;y=0;return a;
        }
        LL d=exgcd(b,a%b);
        LL tot=x;
        x=y;
        y=tot-a/b*y;
        return d;
    }
    int main()
    {
        int k;
        while(scanf("%I64d%I64d%I64d%d",&a,&b,&c,&k)&&a&&b&&c&&k)
        {
            x=0;y=0;
            LL d=exgcd(c,mi(k));
            if((b-a)%d) printf("FOREVER
    ");
            else 
            {
                x=x*(b-a)/d;
                LL r=mi(k)/d;
                x=(x%r+r)%r;
                printf("%I64d
    ",x);
            }
        }
        return 0;
    }
  • 相关阅读:
    几种常见的content-type
    node简单起服务
    ESlint配置案例及如何配置
    网络攻防学习心得一(20159320)工具学习
    网络攻防学习心得一(20159320)黑客信息
    题解 POJ1187 【陨石的秘密】
    题解 POJ1934 【Trip】
    题解 POJ1952 【BUY LOW, BUY LOWER】
    TIM bug 总结以及应对方案
    题解 POJ3171 【Cleaning Shifts】
  • 原文地址:https://www.cnblogs.com/nancheng58/p/6070814.html
Copyright © 2011-2022 走看看