zoukankan      html  css  js  c++  java
  • Poj 2115 C Looooops(exgcd变式)

    C Looooops
    Time Limit: 1000MS      Memory Limit: 65536K
    Total Submissions: 22704        Accepted: 6251
    Description
    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    statement;
    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k. 
    Input
    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 
    The input is finished by a line containing four zeros. 
    Output
    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 
    Sample Input
    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    Sample Output
    0
    2
    32766
    FOREVER
    Source
    CTU Open 2004
    /*
    exgcd变式.
    要求:(a+c*x)mod2^k=b.
    变形得到:c*xmod2^k=b-a.
    即 c*x=(b-a)mod2^k.
    用同余方程求解.
    (
    mod运算是最"自由"的运算
    符合常见的运算律. 
    )
    */
    #include<iostream>
    #include<cstdio>
    #define LL long long
    using namespace std;
    LL a,b,c,k,x,y;
    LL mi(int x)
    {
        LL tot=1;
        for(int i=1;i<=x;i++)  tot<<=1;
        return tot;
    }
    LL exgcd(LL a,LL b)
    {
        if(!b)
        {
            x=1;y=0;return a;
        }
        LL d=exgcd(b,a%b);
        LL tot=x;
        x=y;
        y=tot-a/b*y;
        return d;
    }
    int main()
    {
        int k;
        while(scanf("%I64d%I64d%I64d%d",&a,&b,&c,&k)&&a&&b&&c&&k)
        {
            x=0;y=0;
            LL d=exgcd(c,mi(k));
            if((b-a)%d) printf("FOREVER
    ");
            else 
            {
                x=x*(b-a)/d;
                LL r=mi(k)/d;
                x=(x%r+r)%r;
                printf("%I64d
    ",x);
            }
        }
        return 0;
    }
  • 相关阅读:
    linux编程之main()函数启动过程【转】
    dlmalloc(一)【转】
    Linux进程调度原理【转】
    Linux内存管理原理【转】
    malloc原理和内存碎片【转】
    Linux MTD系统剖析【转】
    linux驱动开发:用户空间操作LCD显示简单的图片【转】
    LCD驱动分析【转】
    LCD常用接口原理【转】
    LCD之mipi DSI接口驱动调试流程【转】
  • 原文地址:https://www.cnblogs.com/nancheng58/p/6070814.html
Copyright © 2011-2022 走看看