题解 (by;zjvarphi)
高斯消元
根据高中化学知识,求解方程的就是一直方程凑出来的,焓值也一样
那么对于要求的方程和一直方程,我们做一次高斯消元,以每个物质为未知数,因为它保证有解,所以消完元后,求解方程的各项系数一定为 (0) 代表我们凑出这个方程了,最后答案就是求出来的值的相反数
读入时用 (hash) 和 (map) 都行,输出时要特判 (0.0)
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=getchar();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
static const int N=2e3+7;
static const db eps=1e-8;
map<string,db> mp[N],cl;
int n,cnt;
db H[N],mat[N][N],tmp;
string ts,al[N];
inline db Gauss() {
for (ri i(1);i<=n&&i<=cnt;p(i)) {
int k=i;
for (ri j(i+1);j<=n;p(j))
if (fabs(mat[k][i])<fabs(mat[j][i])) k=j;
if (k!=i) swap(mat[k],mat[i]);
for (ri j(1);j<=n+1;p(j)) {
if (i==j) continue;
db tp=mat[j][i]/mat[i][i];
for (ri l(1);l<=cnt+1;p(l))
mat[j][l]-=mat[i][l]*tp;
}
}
return -mat[n+1][cnt+1];
}//高斯约旦
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n+1;p(i)) {
while(1) {
scanf("%lf",&tmp);
cin >> ts;
if (ts[0]=='=') break;
if (cl.find(ts)==cl.end()) {al[p(cnt)]=ts;cl[ts]=1.0;}
mp[i][ts]=tmp;
cin >> ts;
if (ts[0]=='=') break;
}
while(1) {
scanf("%lf",&tmp);
cin >> ts;
if (ts[0]=='H'&&ts[1]=='=') break;
if (cl.find(ts)==cl.end()) {al[p(cnt)]=ts;cl[ts]=1.0;}
mp[i][ts]=-tmp;
cin >> ts;
if (ts[0]=='H'&&ts[1]=='=') break;
}
if (i<=n) scanf("%lf",&H[i]);
}
for (ri i(1);i<=n+1;p(i)) {
for (ri j(1);j<=cnt;p(j)) {
if (mp[i].find(al[j])!=mp[i].end())
mat[i][j]=mp[i][al[j]];
}
if (i<=n) mat[i][cnt+1]=H[i];
}
db ans=Gauss();
printf("%.1lf",fabs(ans)>eps?ans:0);
return 0;
}
}
int main() {return nanfeng::main();}