zoukankan      html  css  js  c++  java
  • 题解 [集训队作业2013]城市规划

    题解

    (f_n) 表示 (n) 个点的无向联通图个数,(g_n) 表示 (n) 个点的无向图个数,显然 (g_n=2^{ binom{n}{2}})

    那么可得

    [g_n=sum_{i=1}^n binom{n-1}{i-1}f_ig_{n-i} ]

    意思就是枚举 (1) 所在的最大联通块的大小,统计方案数。

    (g_n=2^{ binom{n}{2}}) 带入原式,并进行化简

    [2^{ binom{n}{2}}=sum_{i=1}^n binom{n-1}{i-1}f_i2^{ binom{n-i}{2}}\ 2^{ binom{n}{2}}=sum_{i=1}^nfrac{(n-1)!}{(i-1)!(n-i)!}f_i2^{ binom{n-i}{2}}\ frac{2^{ binom{n}{2}}}{(n-1)!}=sum_{i=1}^nfrac{f_i2^{ binom{n-i}{2}}}{(i-1)!(n-i)!} ]

    发现这是个卷积形式,设

    [F(x)=sum_{i=1}^{+infty}frac{f_i}{(i-1)!}x^i\ G(x)=sum_{i=0}^{+infty}frac{2^{ binom{i}{2}}}{i!}x^i\ H(x)=sum_{i=1}^{+infty}frac{2^{ binom{i}{2}}}{(i-1)!}x^i ]

    [H=F*G\ F=H*G^{-1} ]

    先对 (G) 求逆,再与 (H) 卷积即可,复杂度 (mathcal{O m (nlogn)})

    Code
    #include<bits/stdc++.h>
    #define Re register
    #define ri Re signed
    #define pd(i) ++i
    #define bq(i) --i
    namespace IO{
        char buf[1<<21],*p1=buf,*p2=buf;
        #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
        struct nanfeng_stream{
            template<typename T>inline nanfeng_stream &operator>>(T &x) {
                Re bool f=false;x=0;Re char ch=gc();
                while(!isdigit(ch)) f|=ch=='-',ch=gc();
                while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
                return x=f?-x:x,*this;
            }
        }cin;
    }
    using IO::cin;
    namespace nanfeng{
        #define FI FILE *IN
        #define FO FILE *OUT
        template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
        template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
        using ll=long long;
        static const int N=1<<19,MOD=1004535809;
        ll h[N],g[N],f[N],gt[N],gc[N],frac[N],inv[N],w1[N],w2[N];
        int R[N],n,len,st;
        auto fpow=[](int x,int y) {
            ll res=1;
            while(y) {
                if (y&1) res=res*x%MOD;
                x=1ll*x*x%MOD;
                y>>=1;
            }
            return res;
        };
        auto MD=[](ll x) {return x>=MOD?x-MOD:x;};
        auto NTT1=[](ll *a) {
            for (ri i(0);i<st;pd(i)) if (R[i]>i) std::swap(a[R[i]],a[i]);
            for (ri t(st>>1),d(1);d<st;t>>=1,d<<=1) 
                for (ri i(0);i<st;i+=d<<1) 
                    for (ri j(0);j<d;pd(j)) {
                        const ll tmp=w1[t*j]*a[i+j+d]%MOD;
                        a[i+j+d]=(a[i+j]-tmp+MOD)%MOD;
                        a[i+j]=MD(a[i+j]+tmp);
                    }
        };
        auto NTT2=[](ll *a) {
            for (ri i(0);i<st;pd(i)) if (R[i]>i) std::swap(a[R[i]],a[i]);
            for (ri t(st>>1),d(1);d<st;t>>=1,d<<=1) 
                for (ri i(0);i<st;i+=d<<1) 
                    for (ri j(0);j<d;pd(j)) {
                        const ll tmp=w2[t*j]*a[i+j+d]%MOD;
                        a[i+j+d]=(a[i+j]-tmp+MOD)%MOD;
                        a[i+j]=MD(a[i+j]+tmp);
                    }
            ll Inv=fpow(st,MOD-2);
            for (ri i(0);i<st;pd(i)) a[i]=a[i]*Inv%MOD;
        };
        void calc(int deg) {
            if (deg==1) return (void)(gt[0]=fpow(g[0],MOD-2));
            calc(deg+1>>1);
            len=0,st=1;
            while(st<=deg<<1) st<<=1,++len;
            for (ri i(0);i<st;pd(i)) R[i]=(R[i>>1]>>1)|((i&1)<<(len-1));
            w1[1]=fpow(3,(MOD-1)/st),w2[1]=fpow(w1[1],MOD-2);
            for (ri i(2);i<st;pd(i)) w1[i]=w1[i-1]*w1[1]%MOD,w2[i]=w2[i-1]*w2[1]%MOD;
            memcpy(gc,g,sizeof(ll)*deg);
            memset(gc+deg,0,sizeof(ll)*(st-deg));
            NTT1(gt),NTT1(gc);
            for (ri i(0);i<st;pd(i)) gt[i]=(2ll-gc[i]*gt[i]%MOD+MOD)%MOD*gt[i]%MOD;
            NTT2(gt);
            memset(gt+deg,0,sizeof(ll)*(st-deg));
        }
        inline int main() {
            // FI=freopen("nanfeng.in","r",stdin);
            // FO=freopen("nanfeng.out","w",stdout);
            cin >> n;
            ++n;
            frac[0]=inv[0]=1;
            for (ri i(1);i<=n;pd(i)) frac[i]=frac[i-1]*i%MOD;
            inv[n]=fpow(frac[n],MOD-2);
            for (ri i(n-1);i;bq(i)) inv[i]=inv[i+1]*(i+1)%MOD;
            g[0]=1;
            for (ri i(1);i<=n;pd(i)) {
                ll tmp=fpow(2,(1ll*i*(i-1)>>1)%(MOD-1));
                h[i]=tmp*inv[i-1]%MOD,g[i]=tmp*inv[i]%MOD;
            }
            w1[0]=w2[0]=1;
            calc(n);
            st=1,len=0;
            while(st<=n<<1) st<<=1,++len;
            memset(gt+n,0,sizeof(ll)*(st-n+1));
            for (ri i(0);i<st;pd(i)) R[i]=(R[i>>1]>>1)|((i&1)<<(len-1));
            w1[1]=fpow(3,(MOD-1)/st),w2[1]=fpow(w1[1],MOD-2);
            for (ri i(2);i<st;pd(i)) w1[i]=w1[i-1]*w1[1]%MOD,w2[i]=w2[i-1]*w2[1]%MOD;
            NTT1(gt),NTT1(h);
            for (ri i(0);i<st;pd(i)) h[i]=h[i]*gt[i]%MOD;
            NTT2(h);
            printf("%lld
    ",h[n-1]*frac[n-2]%MOD);
            return 0;
        }
    }
    int main() {return nanfeng::main();}
    
  • 相关阅读:
    ceph 网络配置
    Centos7.2 下DNS+NamedManager高可用部署方案完整记录
    Mysql多实例数据库
    Mysql 基础
    搭建本地YUM仓库
    Go实现线程安全的缓存
    KubeEdge安装详细教程
    Kubeedge实现原理
    Go语言中new()和make()的区别
    Go语言中append()函数的源码实现在哪里?
  • 原文地址:https://www.cnblogs.com/nanfeng-blog/p/15256434.html
Copyright © 2011-2022 走看看