题解 (by;zjvarphi)
将问题转化成在笛卡尔树上。
建立一棵大根笛卡尔树,那么一个节点管辖的所有儿子就是它管辖的区间。
区间合并类似于线段树的 pushup
可以手模一下。
复杂度 (mathcal{O m (n)})。
Code
#include<bits/stdc++.h>
#define ri signed
#define pd(i) ++i
#define bq(i) --i
#define func(x) std::function<x>
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
#define debug1(x) std::cerr << #x"=" << x << ' '
#define debug2(x) std::cerr << #x"=" << x << std::endl
#define Debug(x) assert(x)
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
bool f=false;x=0;char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IM
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
using ll=long long;
static const int N=1e7+2;
int a[N],st[N],n,s,l,r,p;
ll ans;
namespace GenHelper{
unsigned z1, z2, z3, z4, b;
auto Rand=[]() {
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return z1^z2^z3^z4;
};
}
auto Get=[](int n,unsigned s,int l,int r) {
using namespace GenHelper;
z1=s;
z2=unsigned((~s)^0x233333333U);
z3=unsigned(s^0x1234598766U);
z4=(~s)+51;
for (ri i(1);i<=n;pd(i)) {
int x=Rand()&32767;
int y=Rand()&32767;
a[i]=(l+(x*32768+y)%(r-l+1));
}
};
struct node{int sum1,sum2,mx;};
struct Cartesiantree{
#define ls(x) T[x].l
#define rs(x) T[x].r
#define fa(x) T[x].fa
struct dt{node w;int l,r,fa;}T[N];
func(void(void)) build=[&]() {
int tp=0;
for (ri i(1);i<=n;pd(i)) {
while(tp&&a[st[tp]]<a[i]) --tp;
int fa=st[tp];
ls(i)=rs(fa);
fa(ls(i))=i;
rs(fa)=i;
fa(i)=fa;
st[++tp]=i;
}
};
func(void(int)) dfs=[&](int x) {
T[x].w.sum1=T[x].w.sum2=a[x];
T[x].w.mx=a[x];
if (ls(x)) {
dfs(ls(x));
T[x].w.sum1=(T[ls(x)].w.sum1+1ll*T[ls(x)].w.mx*T[x].w.sum1%p)%p;
T[x].w.sum2=(1ll*T[ls(x)].w.sum2*T[x].w.mx%p+T[x].w.sum2)%p;
T[x].w.mx=1ll*T[ls(x)].w.mx*T[x].w.mx%p;
}
if (rs(x)) {
dfs(rs(x));
T[x].w.sum1=(T[x].w.sum1+1ll*T[rs(x)].w.sum1*T[x].w.mx%p)%p;
T[x].w.sum2=(1ll*T[rs(x)].w.mx*T[x].w.sum2%p+T[rs(x)].w.sum2)%p;
T[x].w.mx=1ll*T[rs(x)].w.mx*T[x].w.mx%p;
}
int s1=T[ls(x)].w.sum2,s2=T[rs(x)].w.sum1;
s1=a[x]+1ll*s1*a[x]%p,s2=a[x]+1ll*s2*a[x]%p;
ll tk=1ll*s1*s2%p;
ans+=tk;
};
}T;
inline int main() {
FI=freopen("tio.in","r",stdin);
FO=freopen("tio.out","w",stdout);
cin >> n >> s >> l >> r >> p;
Get(n,s,l,r);
T.build();
T.dfs(T.rs(0));
printf("%lld
",ans%p);
return 0;
}
}
int main() {return nanfeng::main();}