zoukankan      html  css  js  c++  java
  • NOIP 模拟 $87; m 技术情报局$

    题解 (by;zjvarphi)

    将问题转化成在笛卡尔树上。

    建立一棵大根笛卡尔树,那么一个节点管辖的所有儿子就是它管辖的区间。

    区间合并类似于线段树的 pushup 可以手模一下。

    复杂度 (mathcal{O m (n)})

    Code
    #include<bits/stdc++.h>
    #define ri signed
    #define pd(i) ++i
    #define bq(i) --i
    #define func(x) std::function<x>
    namespace IO{
        char buf[1<<21],*p1=buf,*p2=buf;
        #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
        #define debug1(x) std::cerr << #x"=" << x << ' '
        #define debug2(x) std::cerr << #x"=" << x << std::endl
        #define Debug(x) assert(x)
        struct nanfeng_stream{
            template<typename T>inline nanfeng_stream &operator>>(T &x) {
                bool f=false;x=0;char ch=gc();
                while(!isdigit(ch)) f|=ch=='-',ch=gc();
                while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
                return x=f?-x:x,*this;
            }
        }cin;
    }
    using IO::cin;
    namespace nanfeng{
        #define FI FILE *IM
        #define FO FILE *OUT
        template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
        template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
        using ll=long long;
        static const int N=1e7+2;
        int a[N],st[N],n,s,l,r,p;
        ll ans;
        namespace GenHelper{
            unsigned z1, z2, z3, z4, b;
            auto Rand=[]() {
                b=((z1<<6)^z1)>>13;
                z1=((z1&4294967294U)<<18)^b;
                b=((z2<<2)^z2)>>27;
                z2=((z2&4294967288U)<<2)^b;
                b=((z3<<13)^z3)>>21;
                z3=((z3&4294967280U)<<7)^b;
                b=((z4<<3)^z4)>>12;
                z4=((z4&4294967168U)<<13)^b;
                return z1^z2^z3^z4;
            };
        }
        auto Get=[](int n,unsigned s,int l,int r) {
            using namespace GenHelper;
            z1=s;
            z2=unsigned((~s)^0x233333333U);
            z3=unsigned(s^0x1234598766U);
            z4=(~s)+51;
            for (ri i(1);i<=n;pd(i)) {
                int x=Rand()&32767;
                int y=Rand()&32767;
                a[i]=(l+(x*32768+y)%(r-l+1));
            }
        };
        struct node{int sum1,sum2,mx;};
        struct Cartesiantree{
            #define ls(x) T[x].l
            #define rs(x) T[x].r
            #define fa(x) T[x].fa
            struct dt{node w;int l,r,fa;}T[N];
            func(void(void)) build=[&]() {
                int tp=0;
                for (ri i(1);i<=n;pd(i)) {
                    while(tp&&a[st[tp]]<a[i]) --tp;
                    int fa=st[tp];
                    ls(i)=rs(fa);
                    fa(ls(i))=i;
                    rs(fa)=i;
                    fa(i)=fa;
                    st[++tp]=i;
                }
            };
            func(void(int)) dfs=[&](int x) {
                T[x].w.sum1=T[x].w.sum2=a[x];
                T[x].w.mx=a[x];
                if (ls(x)) {
                    dfs(ls(x));
                    T[x].w.sum1=(T[ls(x)].w.sum1+1ll*T[ls(x)].w.mx*T[x].w.sum1%p)%p;
                    T[x].w.sum2=(1ll*T[ls(x)].w.sum2*T[x].w.mx%p+T[x].w.sum2)%p;
                    T[x].w.mx=1ll*T[ls(x)].w.mx*T[x].w.mx%p;
                }
                if (rs(x)) {
                    dfs(rs(x));
                    T[x].w.sum1=(T[x].w.sum1+1ll*T[rs(x)].w.sum1*T[x].w.mx%p)%p;
                    T[x].w.sum2=(1ll*T[rs(x)].w.mx*T[x].w.sum2%p+T[rs(x)].w.sum2)%p;
                    T[x].w.mx=1ll*T[rs(x)].w.mx*T[x].w.mx%p;
                }
                int s1=T[ls(x)].w.sum2,s2=T[rs(x)].w.sum1;
                s1=a[x]+1ll*s1*a[x]%p,s2=a[x]+1ll*s2*a[x]%p;
                ll tk=1ll*s1*s2%p;
                ans+=tk;
            };
        }T;
        inline int main() {
            FI=freopen("tio.in","r",stdin);
            FO=freopen("tio.out","w",stdout);
            cin >> n >> s >> l >> r >> p;
            Get(n,s,l,r);
            T.build();
            T.dfs(T.rs(0));
            printf("%lld
    ",ans%p);
            return 0;
        }
    }
    int main() {return nanfeng::main();}
    
  • 相关阅读:
    MVC发布出现:未能将文件binxxx.xml 复制到 objReleasePackageTmpinxxx.xml,未能找到文件
    微信第三方平台,微信支付开发 服务商模式 签名错误
    微信第三方平台代公众号发起网页授权 48001 api unauthorized 问题
    微信官方平台第三方开发 关于代公众号发起网页授权
    关于微信第三方平台全网发布的坑
    ASP.NET之MVC 微信公众号授权给第三方平台的技术实现流程(获取第三方平台access_token)
    Maven命令安装jar包到本地仓库
    jsp中jstl标签的类似 if
    一道经典的Java面试题:equals ,== 和hashcode()的区别
    Eclipse快捷键-方便查找
  • 原文地址:https://www.cnblogs.com/nanfeng-blog/p/15494379.html
Copyright © 2011-2022 走看看