zoukankan      html  css  js  c++  java
  • HDU 3449 Consumer(有依赖背包)

    Consumer

    Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/65536 K (Java/Others)
    Total Submission(s): 2385 Accepted Submission(s): 1269

    Problem Description
    FJ is going to do some shopping, and before that, he needs some boxes to carry the different kinds of stuff he is going to buy. Each box is assigned to carry some specific kinds of stuff (that is to say, if he is going to buy one of these stuff, he has to buy the box beforehand). Each kind of stuff has its own value. Now FJ only has an amount of W dollars for shopping, he intends to get the highest value with the money.

    Input
    The first line will contain two integers, n (the number of boxes 1 <= n <= 50), w (the amount of money FJ has, 1 <= w <= 100000) Then n lines follow. Each line contains the following number pi (the price of the ith box 1<=pi<=1000), mi (1<=mi<=10 the number goods ith box can carry), and mi pairs of numbers, the price cj (1<=cj<=100), the value vj(1<=vj<=1000000)

    Output
    For each test case, output the maximum value FJ can get

    Sample Input
    3 800
    300 2 30 50 25 80
    600 1 50 130
    400 3 40 70 30 40 35 60
    
    
    Sample Output
    210
    
    
    Source
    2010 ACM-ICPC Multi-University Training Contest(2)——Host by BUPT
    
    依赖背包。《背包九讲》的第七讲讲了这个。 
    设dp[i][j]为前i个箱子使用金额j获得的最大价值。 
    考虑每个箱子内部就是一个01背包,那么在枚举每一个箱子的时候,使用上一轮能满足本轮箱子费用的状态做一个01背包,然后本轮结束后更新dp数组。 
    最后的ans就是dp[n][W] 
    需要深刻理解一下这个依赖关系。

    题意:每种类型的物品要一个箱子中,并且每个箱子都得花钱买,问最终卖得的物品的最大价值。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int dp[55][100010];
    int n,t,nu,num;
    int main()
    {
        int i,j,k;
        while(scanf("%d%d",&n,&t)!=EOF)
        {
            memset(dp,0,sizeof(dp));
            for(i=1;i<=n;i++)
            {
                scanf("%d%d",&nu,&num);
                for(j=0;j<=nu;j++)///这个盒子的价格是q的时候,当前组下的所有比q容量小的背包都买不了
                    dp[i][j]=-1;
                for(k=t;k>=nu;k--)///比q容量大的背包要根据上一组的背包来买,注意这里买盒子是不能获得相应的价值的
                    dp[i][k]=dp[i-1][k-nu];
                for(j=0;j<num;j++)
                {
                    int a,b;
                    scanf("%d%d",&a,&b);
                    for(k=t;k>=a;k--)
                    {
                        if(dp[i][k-a]!=-1)
                            dp[i][k]=max(dp[i][k],dp[i][k-a]+b);
                    }
                }
                for(j=0;j<=t;j++)///01
                    dp[i][j]=max(dp[i-1][j],dp[i][j]);
            }
            printf("%d
    ",dp[n][t]);
        }
        return 0;
    }
    
  • 相关阅读:
    WPF:ListView 分组合并
    WPF:ListView 分页
    SQL
    多线程27 -- ReentrantLock
    String 对象常用方法及属性 详细介绍
    js中Array 对象方法 详细介绍
    js--运算符与或非 及 if判断条件、隐式转换 介绍
    js-函数表达式和函数声明的区别
    js预编译案例分析
    js--万物皆对象
  • 原文地址:https://www.cnblogs.com/nanfenggu/p/7899979.html
Copyright © 2011-2022 走看看