zoukankan      html  css  js  c++  java
  • 打印Linux内核task_struct(PCB)的信息的可加模块编写

    废话不多说,直接上源代码:这个程序是加载进内核的模块,作用是:打印系统中所有进程的一些信息,注意:这是ubuntu系统下的操作

    #include <linux/kernel.h>
    #include <linux/sched.h>   //这个文件定义了linux下的task_struct数据结构
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/fdtable.h>
    #include <linux/init_task.h>  //里面定义了 init_task (0号进程)
    //内核模块初始化函数
    static int __init print_pid(void)
    {
            struct task_struct *task,*p;  //指向PCB的指针
            struct list_head *pos;//list_head是一个双向链表,用来链接os中的所有进程,我们可以用它访问系统中的所有进程, 
                   //每个pcb内部都维护一个list_head类型的tasks链表,这样就可以通过>每个进程的pcb访问所有进程了
    int count=0;//记录当前系统中的进程数目 printk("Hello World enter begin: "); task=&init_task; //0号进程,所有进程的父进程,遍历进程链表list_head从0号进程开始 //list_for_each用来遍历进程链表,让pos从头指向task双向链表中的每一个结点(task_struct),list_for_each是一个宏
        //list.h头文件中
    list_for_each(pos,&task->tasks) { //list_entry是一个容器宏 ,作用是:让pos从指向结构体task_struct的成员tasks,变为指向结构提task_struct本身,
            //由内部成员地址指向拥有该成员的结构体地址
    p=list_entry(pos,struct task_struct,tasks); count++; //++ printk(" "); //现在pos指向了每一个进程的pcb,那么就可以输出pcb中的信息了 printk("pid:%d; state:%lx; prio:%d; static_prio:%d; parent'pid:%d;",
                p->pid,p->state,p->prio,p->static_prio,(p->parent)->pid); } printk("进程的个数:%d ",count); return 0; } //内核退出函数 static void __exit pid_exit(void) { printk("exiting... "); } module_init(print_pid); module_exit(pid_exit); MODULE_LICENSE("GPL");

    部分函数原型:

    /**
     * list_for_each        -       iterate over a list
     * @pos:        the &struct list_head to use as a loop cursor.
     * @head:       the head for your list.
     */
    
    宏,用来遍历head链表,并且让pos指向每一个结点
    #define list_for_each(pos, head) 
            for (pos = (head)->next; pos != (head); pos = pos->next)
    
    /**
     * list_entry - get the struct for this entry
     * @ptr:        the &struct list_head pointer.
     * @type:       the type of the struct this is embedded in.
     * @member:     the name of the list_head within the struct.
     */
    ptr表示member的地址,type表示结构体的类型.member结构体中的成员
    #define list_entry(ptr, type, member) 
            container_of(ptr, type, member)

    2.task_struct数据结构简单介绍,信息太多了,这里仅仅介绍目前用的

    task_struc位于<linux/sched.h>头文件中

    //linux中进程的状态

    /* Used in tsk->state:进程的状态都是2的次幂,保证"与"操作可以得到所有状态 */
    #define TASK_RUNNING            0x0000            
    #define TASK_INTERRUPTIBLE        0x0001    
    #define TASK_UNINTERRUPTIBLE        0x0002
    #define __TASK_STOPPED            0x0004
    #define __TASK_TRACED            0x0008

    struct task_struct {
    #ifdef CONFIG_THREAD_INFO_IN_TASK
    
        struct thread_info        thread_info;
    #endif
        /* -1 unrunnable, 0 runnable, >0 stopped: 进程状态*/
        volatile long            state;
      /* 父亲进程*/
        struct task_struct __rcu    *real_parent;
    
        /* 养父进程 采用链表*/
        struct task_struct __rcu    *parent;
    
        /*
         * 子孙,兄弟,和组领导者进程,双向链表链接
         */
        struct list_head        children;
        struct list_head        sibling;
        struct task_struct       *group_leader;
    
      //每个进程task_struct内都有一个list_head双向链表,用来链接系统中所有的进程pcb
      //我们可以通过它来获得系统中所有的进程信息   struct list_head tasks;      //线程对应的pid pid_t pid;   //线程组的pid   pid_t tgid;   ....
      //优先级
      int prio;
      int static_prio;
      int normal_prio;
      unsigned int rt_priority;
      ...

    插入一张图片说明进程之间的关系,养父是因为父亲可能被杀死,或者断了,那么系统要为当前进程找一个养父进程,否则当前进程及兄弟,孩子进程资源无法释放,导致内存用不了了(因为指针丢了,招不到这块内存的地址了)

    系统中进程的组织方式:

    3.Makefile文件编写

    .c内核正文文件
    Makefile文件用来编译产生内核.ko模块的
    文件架构:
    obj-m:=task_struct.o    #产生task_struct模块的目标文件
    #目标文件 文件 要与模块文件名字相同
    CURRENT_PATH:=$(shell pwd)
    LINUX_KERNEL:=$(shell uname -r)
    LINUX_KERNEL_PATH:=/usr/src/linux-headers-$(LINUX_KERNEL)

    all:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules #编译模块
    #[Tab] 内核的路径 当前目录编译完放在哪里 表明编译的是内核>文件

    clean:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean

    4.编译

     5.插入内核,并显示结果

     显示消息:使用命令dmesg,这里只截取了部分太多了,发现我的系统目前有364个进程

    附录:完整的task_struct定义和sched.h头文件

    /* SPDX-License-Identifier: GPL-2.0 */
    #ifndef _LINUX_SCHED_H
    #define _LINUX_SCHED_H
    
    /*
     * Define 'struct task_struct' and provide the main scheduler
     * APIs (schedule(), wakeup variants, etc.)
     */
    
    #include <uapi/linux/sched.h>
    
    #include <asm/current.h>
    
    #include <linux/pid.h>
    #include <linux/sem.h>
    #include <linux/shm.h>
    #include <linux/kcov.h>
    #include <linux/mutex.h>
    #include <linux/plist.h>
    #include <linux/hrtimer.h>
    #include <linux/seccomp.h>
    #include <linux/nodemask.h>
    #include <linux/rcupdate.h>
    #include <linux/refcount.h>
    #include <linux/resource.h>
    #include <linux/latencytop.h>
    #include <linux/sched/prio.h>
    #include <linux/sched/types.h>
    #include <linux/signal_types.h>
    #include <linux/mm_types_task.h>
    #include <linux/task_io_accounting.h>
    #include <linux/posix-timers.h>
    #include <linux/rseq.h>
    
    /* task_struct member predeclarations (sorted alphabetically): */
    struct audit_context;
    struct backing_dev_info;
    struct bio_list;
    struct blk_plug;
    struct capture_control;
    struct cfs_rq;
    struct fs_struct;
    struct futex_pi_state;
    struct io_context;
    struct mempolicy;
    struct nameidata;
    struct nsproxy;
    struct perf_event_context;
    struct pid_namespace;
    struct pipe_inode_info;
    struct rcu_node;
    struct reclaim_state;
    struct robust_list_head;
    struct root_domain;
    struct rq;
    struct sched_attr;
    struct sched_param;
    struct seq_file;
    struct sighand_struct;
    struct signal_struct;
    struct task_delay_info;
    struct task_group;
    
    /*
     * Task state bitmask. NOTE! These bits are also
     * encoded in fs/proc/array.c: get_task_state().
     *
     * We have two separate sets of flags: task->state
     * is about runnability, while task->exit_state are
     * about the task exiting. Confusing, but this way
     * modifying one set can't modify the other one by
     * mistake.
     */
    
    /* Used in tsk->state:进程的状态都是2的次幂保证"与"操作可以得到所有状态 */
    #define TASK_RUNNING            0x0000
    #define TASK_INTERRUPTIBLE        0x0001
    #define TASK_UNINTERRUPTIBLE        0x0002
    #define __TASK_STOPPED            0x0004
    #define __TASK_TRACED            0x0008
    /* Used in tsk->exit_state: */
    #define EXIT_DEAD            0x0010
    #define EXIT_ZOMBIE            0x0020
    #define EXIT_TRACE            (EXIT_ZOMBIE | EXIT_DEAD)
    /* Used in tsk->state again: */
    #define TASK_PARKED            0x0040
    #define TASK_DEAD            0x0080
    #define TASK_WAKEKILL            0x0100
    #define TASK_WAKING            0x0200
    #define TASK_NOLOAD            0x0400
    #define TASK_NEW            0x0800
    #define TASK_STATE_MAX            0x1000
    
    /* Convenience macros for the sake of set_current_state: */
    #define TASK_KILLABLE            (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
    #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
    #define TASK_TRACED            (TASK_WAKEKILL | __TASK_TRACED)
    
    #define TASK_IDLE            (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
    
    /* Convenience macros for the sake of wake_up(): */
    #define TASK_NORMAL            (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
    
    /* get_task_state(): */
    #define TASK_REPORT            (TASK_RUNNING | TASK_INTERRUPTIBLE | 
                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | 
                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | 
                         TASK_PARKED)
    
    #define task_is_traced(task)        ((task->state & __TASK_TRACED) != 0)
    
    #define task_is_stopped(task)        ((task->state & __TASK_STOPPED) != 0)
    
    #define task_is_stopped_or_traced(task)    ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
    
    #define task_contributes_to_load(task)    ((task->state & TASK_UNINTERRUPTIBLE) != 0 && 
                         (task->flags & PF_FROZEN) == 0 && 
                         (task->state & TASK_NOLOAD) == 0)
    
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    
    /*
     * Special states are those that do not use the normal wait-loop pattern. See
     * the comment with set_special_state().
     */
    #define is_special_task_state(state)                
        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
    
    #define __set_current_state(state_value)            
        do {                            
            WARN_ON_ONCE(is_special_task_state(state_value));
            current->task_state_change = _THIS_IP_;        
            current->state = (state_value);            
        } while (0)
    
    #define set_current_state(state_value)                
        do {                            
            WARN_ON_ONCE(is_special_task_state(state_value));
            current->task_state_change = _THIS_IP_;        
            smp_store_mb(current->state, (state_value));    
        } while (0)
    
    #define set_special_state(state_value)                    
        do {                                
            unsigned long flags; /* may shadow */            
            WARN_ON_ONCE(!is_special_task_state(state_value));    
            raw_spin_lock_irqsave(&current->pi_lock, flags);    
            current->task_state_change = _THIS_IP_;            
            current->state = (state_value);                
            raw_spin_unlock_irqrestore(&current->pi_lock, flags);    
        } while (0)
    #else
    /*
     * set_current_state() includes a barrier so that the write of current->state
     * is correctly serialised wrt the caller's subsequent test of whether to
     * actually sleep:
     *
     *   for (;;) {
     *    set_current_state(TASK_UNINTERRUPTIBLE);
     *    if (!need_sleep)
     *        break;
     *
     *    schedule();
     *   }
     *   __set_current_state(TASK_RUNNING);
     *
     * If the caller does not need such serialisation (because, for instance, the
     * condition test and condition change and wakeup are under the same lock) then
     * use __set_current_state().
     *
     * The above is typically ordered against the wakeup, which does:
     *
     *   need_sleep = false;
     *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
     *
     * where wake_up_state() executes a full memory barrier before accessing the
     * task state.
     *
     * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
     * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
     * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
     *
     * However, with slightly different timing the wakeup TASK_RUNNING store can
     * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
     * a problem either because that will result in one extra go around the loop
     * and our @cond test will save the day.
     *
     * Also see the comments of try_to_wake_up().
     */
    #define __set_current_state(state_value)                
        current->state = (state_value)
    
    #define set_current_state(state_value)                    
        smp_store_mb(current->state, (state_value))
    
    /*
     * set_special_state() should be used for those states when the blocking task
     * can not use the regular condition based wait-loop. In that case we must
     * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
     * will not collide with our state change.
     */
    #define set_special_state(state_value)                    
        do {                                
            unsigned long flags; /* may shadow */            
            raw_spin_lock_irqsave(&current->pi_lock, flags);    
            current->state = (state_value);                
            raw_spin_unlock_irqrestore(&current->pi_lock, flags);    
        } while (0)
    
    #endif
    
    /* Task command name length: */
    #define TASK_COMM_LEN            16
    
    extern void scheduler_tick(void);
    
    #define    MAX_SCHEDULE_TIMEOUT        LONG_MAX
    
    extern long schedule_timeout(long timeout);
    extern long schedule_timeout_interruptible(long timeout);
    extern long schedule_timeout_killable(long timeout);
    extern long schedule_timeout_uninterruptible(long timeout);
    extern long schedule_timeout_idle(long timeout);
    asmlinkage void schedule(void);
    extern void schedule_preempt_disabled(void);
    asmlinkage void preempt_schedule_irq(void);
    
    extern int __must_check io_schedule_prepare(void);
    extern void io_schedule_finish(int token);
    extern long io_schedule_timeout(long timeout);
    extern void io_schedule(void);
    
    /**
     * struct prev_cputime - snapshot of system and user cputime
     * @utime: time spent in user mode
     * @stime: time spent in system mode
     * @lock: protects the above two fields
     *
     * Stores previous user/system time values such that we can guarantee
     * monotonicity.
     */
    struct prev_cputime {
    #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
        u64                utime;
        u64                stime;
        raw_spinlock_t            lock;
    #endif
    };
    
    enum vtime_state {
        /* Task is sleeping or running in a CPU with VTIME inactive: */
        VTIME_INACTIVE = 0,
        /* Task runs in userspace in a CPU with VTIME active: */
        VTIME_USER,
        /* Task runs in kernelspace in a CPU with VTIME active: */
        VTIME_SYS,
    };
    
    struct vtime {
        seqcount_t        seqcount;
        unsigned long long    starttime;
        enum vtime_state    state;
        u64            utime;
        u64            stime;
        u64            gtime;
    };
    
    /*
     * Utilization clamp constraints.
     * @UCLAMP_MIN:    Minimum utilization
     * @UCLAMP_MAX:    Maximum utilization
     * @UCLAMP_CNT:    Utilization clamp constraints count
     */
    enum uclamp_id {
        UCLAMP_MIN = 0,
        UCLAMP_MAX,
        UCLAMP_CNT
    };
    
    #ifdef CONFIG_SMP
    extern struct root_domain def_root_domain;
    extern struct mutex sched_domains_mutex;
    #endif
    
    struct sched_info {
    #ifdef CONFIG_SCHED_INFO
        /* Cumulative counters: */
    
        /* # of times we have run on this CPU: */
        unsigned long            pcount;
    
        /* Time spent waiting on a runqueue: */
        unsigned long long        run_delay;
    
        /* Timestamps: */
    
        /* When did we last run on a CPU? */
        unsigned long long        last_arrival;
    
        /* When were we last queued to run? */
        unsigned long long        last_queued;
    
    #endif /* CONFIG_SCHED_INFO */
    };
    
    /*
     * Integer metrics need fixed point arithmetic, e.g., sched/fair
     * has a few: load, load_avg, util_avg, freq, and capacity.
     *
     * We define a basic fixed point arithmetic range, and then formalize
     * all these metrics based on that basic range.
     */
    # define SCHED_FIXEDPOINT_SHIFT        10
    # define SCHED_FIXEDPOINT_SCALE        (1L << SCHED_FIXEDPOINT_SHIFT)
    
    /* Increase resolution of cpu_capacity calculations */
    # define SCHED_CAPACITY_SHIFT        SCHED_FIXEDPOINT_SHIFT
    # define SCHED_CAPACITY_SCALE        (1L << SCHED_CAPACITY_SHIFT)
    
    struct load_weight {
        unsigned long            weight;
        u32                inv_weight;
    };
    
    /**
     * struct util_est - Estimation utilization of FAIR tasks
     * @enqueued: instantaneous estimated utilization of a task/cpu
     * @ewma:     the Exponential Weighted Moving Average (EWMA)
     *            utilization of a task
     *
     * Support data structure to track an Exponential Weighted Moving Average
     * (EWMA) of a FAIR task's utilization. New samples are added to the moving
     * average each time a task completes an activation. Sample's weight is chosen
     * so that the EWMA will be relatively insensitive to transient changes to the
     * task's workload.
     *
     * The enqueued attribute has a slightly different meaning for tasks and cpus:
     * - task:   the task's util_avg at last task dequeue time
     * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
     * Thus, the util_est.enqueued of a task represents the contribution on the
     * estimated utilization of the CPU where that task is currently enqueued.
     *
     * Only for tasks we track a moving average of the past instantaneous
     * estimated utilization. This allows to absorb sporadic drops in utilization
     * of an otherwise almost periodic task.
     */
    struct util_est {
        unsigned int            enqueued;
        unsigned int            ewma;
    #define UTIL_EST_WEIGHT_SHIFT        2
    } __attribute__((__aligned__(sizeof(u64))));
    
    /*
     * The load_avg/util_avg accumulates an infinite geometric series
     * (see __update_load_avg() in kernel/sched/fair.c).
     *
     * [load_avg definition]
     *
     *   load_avg = runnable% * scale_load_down(load)
     *
     * where runnable% is the time ratio that a sched_entity is runnable.
     * For cfs_rq, it is the aggregated load_avg of all runnable and
     * blocked sched_entities.
     *
     * [util_avg definition]
     *
     *   util_avg = running% * SCHED_CAPACITY_SCALE
     *
     * where running% is the time ratio that a sched_entity is running on
     * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
     * and blocked sched_entities.
     *
     * load_avg and util_avg don't direcly factor frequency scaling and CPU
     * capacity scaling. The scaling is done through the rq_clock_pelt that
     * is used for computing those signals (see update_rq_clock_pelt())
     *
     * N.B., the above ratios (runnable% and running%) themselves are in the
     * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
     * to as large a range as necessary. This is for example reflected by
     * util_avg's SCHED_CAPACITY_SCALE.
     *
     * [Overflow issue]
     *
     * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
     * with the highest load (=88761), always runnable on a single cfs_rq,
     * and should not overflow as the number already hits PID_MAX_LIMIT.
     *
     * For all other cases (including 32-bit kernels), struct load_weight's
     * weight will overflow first before we do, because:
     *
     *    Max(load_avg) <= Max(load.weight)
     *
     * Then it is the load_weight's responsibility to consider overflow
     * issues.
     */
    struct sched_avg {
        u64                last_update_time;
        u64                load_sum;
        u64                runnable_load_sum;
        u32                util_sum;
        u32                period_contrib;
        unsigned long            load_avg;
        unsigned long            runnable_load_avg;
        unsigned long            util_avg;
        struct util_est            util_est;
    } ____cacheline_aligned;
    
    struct sched_statistics {
    #ifdef CONFIG_SCHEDSTATS
        u64                wait_start;
        u64                wait_max;
        u64                wait_count;
        u64                wait_sum;
        u64                iowait_count;
        u64                iowait_sum;
    
        u64                sleep_start;
        u64                sleep_max;
        s64                sum_sleep_runtime;
    
        u64                block_start;
        u64                block_max;
        u64                exec_max;
        u64                slice_max;
    
        u64                nr_migrations_cold;
        u64                nr_failed_migrations_affine;
        u64                nr_failed_migrations_running;
        u64                nr_failed_migrations_hot;
        u64                nr_forced_migrations;
    
        u64                nr_wakeups;
        u64                nr_wakeups_sync;
        u64                nr_wakeups_migrate;
        u64                nr_wakeups_local;
        u64                nr_wakeups_remote;
        u64                nr_wakeups_affine;
        u64                nr_wakeups_affine_attempts;
        u64                nr_wakeups_passive;
        u64                nr_wakeups_idle;
    #endif
    };
    
    struct sched_entity {
        /* For load-balancing: */
        struct load_weight        load;
        unsigned long            runnable_weight;
        struct rb_node            run_node;
        struct list_head        group_node;
        unsigned int            on_rq;
    
        u64                exec_start;
        u64                sum_exec_runtime;
        u64                vruntime;
        u64                prev_sum_exec_runtime;
    
        u64                nr_migrations;
    
        struct sched_statistics        statistics;
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
        int                depth;
        struct sched_entity        *parent;
        /* rq on which this entity is (to be) queued: */
        struct cfs_rq            *cfs_rq;
        /* rq "owned" by this entity/group: */
        struct cfs_rq            *my_q;
    #endif
    
    #ifdef CONFIG_SMP
        /*
         * Per entity load average tracking.
         *
         * Put into separate cache line so it does not
         * collide with read-mostly values above.
         */
        struct sched_avg        avg;
    #endif
    };
    
    struct sched_rt_entity {
        struct list_head        run_list;
        unsigned long            timeout;
        unsigned long            watchdog_stamp;
        unsigned int            time_slice;
        unsigned short            on_rq;
        unsigned short            on_list;
    
        struct sched_rt_entity        *back;
    #ifdef CONFIG_RT_GROUP_SCHED
        struct sched_rt_entity        *parent;
        /* rq on which this entity is (to be) queued: */
        struct rt_rq            *rt_rq;
        /* rq "owned" by this entity/group: */
        struct rt_rq            *my_q;
    #endif
    } __randomize_layout;
    
    struct sched_dl_entity {
        struct rb_node            rb_node;
    
        /*
         * Original scheduling parameters. Copied here from sched_attr
         * during sched_setattr(), they will remain the same until
         * the next sched_setattr().
         */
        u64                dl_runtime;    /* Maximum runtime for each instance    */
        u64                dl_deadline;    /* Relative deadline of each instance    */
        u64                dl_period;    /* Separation of two instances (period) */
        u64                dl_bw;        /* dl_runtime / dl_period        */
        u64                dl_density;    /* dl_runtime / dl_deadline        */
    
        /*
         * Actual scheduling parameters. Initialized with the values above,
         * they are continuously updated during task execution. Note that
         * the remaining runtime could be < 0 in case we are in overrun.
         */
        s64                runtime;    /* Remaining runtime for this instance    */
        u64                deadline;    /* Absolute deadline for this instance    */
        unsigned int            flags;        /* Specifying the scheduler behaviour    */
    
        /*
         * Some bool flags:
         *
         * @dl_throttled tells if we exhausted the runtime. If so, the
         * task has to wait for a replenishment to be performed at the
         * next firing of dl_timer.
         *
         * @dl_boosted tells if we are boosted due to DI. If so we are
         * outside bandwidth enforcement mechanism (but only until we
         * exit the critical section);
         *
         * @dl_yielded tells if task gave up the CPU before consuming
         * all its available runtime during the last job.
         *
         * @dl_non_contending tells if the task is inactive while still
         * contributing to the active utilization. In other words, it
         * indicates if the inactive timer has been armed and its handler
         * has not been executed yet. This flag is useful to avoid race
         * conditions between the inactive timer handler and the wakeup
         * code.
         *
         * @dl_overrun tells if the task asked to be informed about runtime
         * overruns.
         */
        unsigned int            dl_throttled      : 1;
        unsigned int            dl_boosted        : 1;
        unsigned int            dl_yielded        : 1;
        unsigned int            dl_non_contending : 1;
        unsigned int            dl_overrun      : 1;
    
        /*
         * Bandwidth enforcement timer. Each -deadline task has its
         * own bandwidth to be enforced, thus we need one timer per task.
         */
        struct hrtimer            dl_timer;
    
        /*
         * Inactive timer, responsible for decreasing the active utilization
         * at the "0-lag time". When a -deadline task blocks, it contributes
         * to GRUB's active utilization until the "0-lag time", hence a
         * timer is needed to decrease the active utilization at the correct
         * time.
         */
        struct hrtimer inactive_timer;
    };
    
    #ifdef CONFIG_UCLAMP_TASK
    /* Number of utilization clamp buckets (shorter alias) */
    #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
    
    /*
     * Utilization clamp for a scheduling entity
     * @value:        clamp value "assigned" to a se
     * @bucket_id:        bucket index corresponding to the "assigned" value
     * @active:        the se is currently refcounted in a rq's bucket
     * @user_defined:    the requested clamp value comes from user-space
     *
     * The bucket_id is the index of the clamp bucket matching the clamp value
     * which is pre-computed and stored to avoid expensive integer divisions from
     * the fast path.
     *
     * The active bit is set whenever a task has got an "effective" value assigned,
     * which can be different from the clamp value "requested" from user-space.
     * This allows to know a task is refcounted in the rq's bucket corresponding
     * to the "effective" bucket_id.
     *
     * The user_defined bit is set whenever a task has got a task-specific clamp
     * value requested from userspace, i.e. the system defaults apply to this task
     * just as a restriction. This allows to relax default clamps when a less
     * restrictive task-specific value has been requested, thus allowing to
     * implement a "nice" semantic. For example, a task running with a 20%
     * default boost can still drop its own boosting to 0%.
     */
    struct uclamp_se {
        unsigned int value        : bits_per(SCHED_CAPACITY_SCALE);
        unsigned int bucket_id        : bits_per(UCLAMP_BUCKETS);
        unsigned int active        : 1;
        unsigned int user_defined    : 1;
    };
    #endif /* CONFIG_UCLAMP_TASK */
    
    union rcu_special {
        struct {
            u8            blocked;
            u8            need_qs;
            u8            exp_hint; /* Hint for performance. */
            u8            deferred_qs;
        } b; /* Bits. */
        u32 s; /* Set of bits. */
    };
    
    enum perf_event_task_context {
        perf_invalid_context = -1,
        perf_hw_context = 0,
        perf_sw_context,
        perf_nr_task_contexts,
    };
    
    struct wake_q_node {
        struct wake_q_node *next;
    };
    
    struct task_struct {
    #ifdef CONFIG_THREAD_INFO_IN_TASK
        /*
         * For reasons of header soup (see current_thread_info()), this
         * must be the first element of task_struct.
         */
        struct thread_info        thread_info;
    #endif
        /* -1 unrunnable, 0 runnable, >0 stopped: */
        volatile long            state;
    
        /*
         * This begins the randomizable portion of task_struct. Only
         * scheduling-critical items should be added above here.
         */
        randomized_struct_fields_start
    
        void                *stack;
        refcount_t            usage;
        /* Per task flags (PF_*), defined further below: */
        unsigned int            flags;
        unsigned int            ptrace;
    
    #ifdef CONFIG_SMP
        struct llist_node        wake_entry;
        int                on_cpu;
    #ifdef CONFIG_THREAD_INFO_IN_TASK
        /* Current CPU: */
        unsigned int            cpu;
    #endif
        unsigned int            wakee_flips;
        unsigned long            wakee_flip_decay_ts;
        struct task_struct        *last_wakee;
    
        /*
         * recent_used_cpu is initially set as the last CPU used by a task
         * that wakes affine another task. Waker/wakee relationships can
         * push tasks around a CPU where each wakeup moves to the next one.
         * Tracking a recently used CPU allows a quick search for a recently
         * used CPU that may be idle.
         */
        int                recent_used_cpu;
        int                wake_cpu;
    #endif
        int                on_rq;
    
        int                prio;
        int                static_prio;
        int                normal_prio;
        unsigned int            rt_priority;
    
        const struct sched_class    *sched_class;
        struct sched_entity        se;
        struct sched_rt_entity        rt;
    #ifdef CONFIG_CGROUP_SCHED
        struct task_group        *sched_task_group;
    #endif
        struct sched_dl_entity        dl;
    
    #ifdef CONFIG_UCLAMP_TASK
        /* Clamp values requested for a scheduling entity */
        struct uclamp_se        uclamp_req[UCLAMP_CNT];
        /* Effective clamp values used for a scheduling entity */
        struct uclamp_se        uclamp[UCLAMP_CNT];
    #endif
    
    #ifdef CONFIG_PREEMPT_NOTIFIERS
        /* List of struct preempt_notifier: */
        struct hlist_head        preempt_notifiers;
    #endif
    
    #ifdef CONFIG_BLK_DEV_IO_TRACE
        unsigned int            btrace_seq;
    #endif
    
        unsigned int            policy;
        int                nr_cpus_allowed;
        const cpumask_t            *cpus_ptr;
        cpumask_t            cpus_mask;
    
    #ifdef CONFIG_PREEMPT_RCU
        int                rcu_read_lock_nesting;
        union rcu_special        rcu_read_unlock_special;
        struct list_head        rcu_node_entry;
        struct rcu_node            *rcu_blocked_node;
    #endif /* #ifdef CONFIG_PREEMPT_RCU */
    
    #ifdef CONFIG_TASKS_RCU
        unsigned long            rcu_tasks_nvcsw;
        u8                rcu_tasks_holdout;
        u8                rcu_tasks_idx;
        int                rcu_tasks_idle_cpu;
        struct list_head        rcu_tasks_holdout_list;
    #endif /* #ifdef CONFIG_TASKS_RCU */
    
        struct sched_info        sched_info;
    
        struct list_head        tasks;
    #ifdef CONFIG_SMP
        struct plist_node        pushable_tasks;
        struct rb_node            pushable_dl_tasks;
    #endif
    
        struct mm_struct        *mm;
        struct mm_struct        *active_mm;
    
        /* Per-thread vma caching: */
        struct vmacache            vmacache;
    
    #ifdef SPLIT_RSS_COUNTING
        struct task_rss_stat        rss_stat;
    #endif
        int                exit_state;
        int                exit_code;
        int                exit_signal;
        /* The signal sent when the parent dies: */
        int                pdeath_signal;
        /* JOBCTL_*, siglock protected: */
        unsigned long            jobctl;
    
        /* Used for emulating ABI behavior of previous Linux versions: */
        unsigned int            personality;
    
        /* Scheduler bits, serialized by scheduler locks: */
        unsigned            sched_reset_on_fork:1;
        unsigned            sched_contributes_to_load:1;
        unsigned            sched_migrated:1;
        unsigned            sched_remote_wakeup:1;
    #ifdef CONFIG_PSI
        unsigned            sched_psi_wake_requeue:1;
    #endif
    
        /* Force alignment to the next boundary: */
        unsigned            :0;
    
        /* Unserialized, strictly 'current' */
    
        /* Bit to tell LSMs we're in execve(): */
        unsigned            in_execve:1;
        unsigned            in_iowait:1;
    #ifndef TIF_RESTORE_SIGMASK
        unsigned            restore_sigmask:1;
    #endif
    #ifdef CONFIG_MEMCG
        unsigned            in_user_fault:1;
    #endif
    #ifdef CONFIG_COMPAT_BRK
        unsigned            brk_randomized:1;
    #endif
    #ifdef CONFIG_CGROUPS
        /* disallow userland-initiated cgroup migration */
        unsigned            no_cgroup_migration:1;
        /* task is frozen/stopped (used by the cgroup freezer) */
        unsigned            frozen:1;
    #endif
    #ifdef CONFIG_BLK_CGROUP
        /* to be used once the psi infrastructure lands upstream. */
        unsigned            use_memdelay:1;
    #endif
    
        unsigned long            atomic_flags; /* Flags requiring atomic access. */
    
        struct restart_block        restart_block;
    
        pid_t                pid;
        pid_t                tgid;
    
    #ifdef CONFIG_STACKPROTECTOR
        /* Canary value for the -fstack-protector GCC feature: */
        unsigned long            stack_canary;
    #endif
        /*
         * Pointers to the (original) parent process, youngest child, younger sibling,
         * older sibling, respectively.  (p->father can be replaced with
         * p->real_parent->pid)
         */
    
        /* Real parent process: */
        struct task_struct __rcu    *real_parent;
    
        /* Recipient of SIGCHLD, wait4() reports: */
        struct task_struct __rcu    *parent;
    
        /*
         * Children/sibling form the list of natural children:
         */
        struct list_head        children;
        struct list_head        sibling;
        struct task_struct        *group_leader;
    
        /*
         * 'ptraced' is the list of tasks this task is using ptrace() on.
         *
         * This includes both natural children and PTRACE_ATTACH targets.
         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
         */
        struct list_head        ptraced;
        struct list_head        ptrace_entry;
    
        /* PID/PID hash table linkage. */
        struct pid            *thread_pid;
        struct hlist_node        pid_links[PIDTYPE_MAX];
        struct list_head        thread_group;
        struct list_head        thread_node;
    
        struct completion        *vfork_done;
    
        /* CLONE_CHILD_SETTID: */
        int __user            *set_child_tid;
    
        /* CLONE_CHILD_CLEARTID: */
        int __user            *clear_child_tid;
    
        u64                utime;
        u64                stime;
    #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
        u64                utimescaled;
        u64                stimescaled;
    #endif
        u64                gtime;
        struct prev_cputime        prev_cputime;
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
        struct vtime            vtime;
    #endif
    
    #ifdef CONFIG_NO_HZ_FULL
        atomic_t            tick_dep_mask;
    #endif
        /* Context switch counts: */
        unsigned long            nvcsw;
        unsigned long            nivcsw;
    
        /* Monotonic time in nsecs: */
        u64                start_time;
    
        /* Boot based time in nsecs: */
        u64                real_start_time;
    
        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
        unsigned long            min_flt;
        unsigned long            maj_flt;
    
        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
        struct posix_cputimers        posix_cputimers;
    
        /* Process credentials: */
    
        /* Tracer's credentials at attach: */
        const struct cred __rcu        *ptracer_cred;
    
        /* Objective and real subjective task credentials (COW): */
        const struct cred __rcu        *real_cred;
    
        /* Effective (overridable) subjective task credentials (COW): */
        const struct cred __rcu        *cred;
    
    #ifdef CONFIG_KEYS
        /* Cached requested key. */
        struct key            *cached_requested_key;
    #endif
    
        /*
         * executable name, excluding path.
         *
         * - normally initialized setup_new_exec()
         * - access it with [gs]et_task_comm()
         * - lock it with task_lock()
         */
        char                comm[TASK_COMM_LEN];
    
        struct nameidata        *nameidata;
    
    #ifdef CONFIG_SYSVIPC
        struct sysv_sem            sysvsem;
        struct sysv_shm            sysvshm;
    #endif
    #ifdef CONFIG_DETECT_HUNG_TASK
        unsigned long            last_switch_count;
        unsigned long            last_switch_time;
    #endif
        /* Filesystem information: */
        struct fs_struct        *fs;
    
        /* Open file information: */
        struct files_struct        *files;
    
        /* Namespaces: */
        struct nsproxy            *nsproxy;
    
        /* Signal handlers: */
        struct signal_struct        *signal;
        struct sighand_struct        *sighand;
        sigset_t            blocked;
        sigset_t            real_blocked;
        /* Restored if set_restore_sigmask() was used: */
        sigset_t            saved_sigmask;
        struct sigpending        pending;
        unsigned long            sas_ss_sp;
        size_t                sas_ss_size;
        unsigned int            sas_ss_flags;
    
        struct callback_head        *task_works;
    
    #ifdef CONFIG_AUDIT
    #ifdef CONFIG_AUDITSYSCALL
        struct audit_context        *audit_context;
    #endif
        kuid_t                loginuid;
        unsigned int            sessionid;
    #endif
        struct seccomp            seccomp;
    
        /* Thread group tracking: */
        u64                parent_exec_id;
        u64                self_exec_id;
    
        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
        spinlock_t            alloc_lock;
    
        /* Protection of the PI data structures: */
        raw_spinlock_t            pi_lock;
    
        struct wake_q_node        wake_q;
    
    #ifdef CONFIG_RT_MUTEXES
        /* PI waiters blocked on a rt_mutex held by this task: */
        struct rb_root_cached        pi_waiters;
        /* Updated under owner's pi_lock and rq lock */
        struct task_struct        *pi_top_task;
        /* Deadlock detection and priority inheritance handling: */
        struct rt_mutex_waiter        *pi_blocked_on;
    #endif
    
    #ifdef CONFIG_DEBUG_MUTEXES
        /* Mutex deadlock detection: */
        struct mutex_waiter        *blocked_on;
    #endif
    
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
        int                non_block_count;
    #endif
    
    #ifdef CONFIG_TRACE_IRQFLAGS
        unsigned int            irq_events;
        unsigned long            hardirq_enable_ip;
        unsigned long            hardirq_disable_ip;
        unsigned int            hardirq_enable_event;
        unsigned int            hardirq_disable_event;
        int                hardirqs_enabled;
        int                hardirq_context;
        unsigned long            softirq_disable_ip;
        unsigned long            softirq_enable_ip;
        unsigned int            softirq_disable_event;
        unsigned int            softirq_enable_event;
        int                softirqs_enabled;
        int                softirq_context;
    #endif
    
    #ifdef CONFIG_LOCKDEP
    # define MAX_LOCK_DEPTH            48UL
        u64                curr_chain_key;
        int                lockdep_depth;
        unsigned int            lockdep_recursion;
        struct held_lock        held_locks[MAX_LOCK_DEPTH];
    #endif
    
    #ifdef CONFIG_UBSAN
        unsigned int            in_ubsan;
    #endif
    
        /* Journalling filesystem info: */
        void                *journal_info;
    
        /* Stacked block device info: */
        struct bio_list            *bio_list;
    
    #ifdef CONFIG_BLOCK
        /* Stack plugging: */
        struct blk_plug            *plug;
    #endif
    
        /* VM state: */
        struct reclaim_state        *reclaim_state;
    
        struct backing_dev_info        *backing_dev_info;
    
        struct io_context        *io_context;
    
    #ifdef CONFIG_COMPACTION
        struct capture_control        *capture_control;
    #endif
        /* Ptrace state: */
        unsigned long            ptrace_message;
        kernel_siginfo_t        *last_siginfo;
    
        struct task_io_accounting    ioac;
    #ifdef CONFIG_PSI
        /* Pressure stall state */
        unsigned int            psi_flags;
    #endif
    #ifdef CONFIG_TASK_XACCT
        /* Accumulated RSS usage: */
        u64                acct_rss_mem1;
        /* Accumulated virtual memory usage: */
        u64                acct_vm_mem1;
        /* stime + utime since last update: */
        u64                acct_timexpd;
    #endif
    #ifdef CONFIG_CPUSETS
        /* Protected by ->alloc_lock: */
        nodemask_t            mems_allowed;
        /* Seqence number to catch updates: */
        seqcount_t            mems_allowed_seq;
        int                cpuset_mem_spread_rotor;
        int                cpuset_slab_spread_rotor;
    #endif
    #ifdef CONFIG_CGROUPS
        /* Control Group info protected by css_set_lock: */
        struct css_set __rcu        *cgroups;
        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
        struct list_head        cg_list;
    #endif
    #ifdef CONFIG_X86_CPU_RESCTRL
        u32                closid;
        u32                rmid;
    #endif
    #ifdef CONFIG_FUTEX
        struct robust_list_head __user    *robust_list;
    #ifdef CONFIG_COMPAT
        struct compat_robust_list_head __user *compat_robust_list;
    #endif
        struct list_head        pi_state_list;
        struct futex_pi_state        *pi_state_cache;
        struct mutex            futex_exit_mutex;
        unsigned int            futex_state;
    #endif
    #ifdef CONFIG_PERF_EVENTS
        struct perf_event_context    *perf_event_ctxp[perf_nr_task_contexts];
        struct mutex            perf_event_mutex;
        struct list_head        perf_event_list;
    #endif
    #ifdef CONFIG_DEBUG_PREEMPT
        unsigned long            preempt_disable_ip;
    #endif
    #ifdef CONFIG_NUMA
        /* Protected by alloc_lock: */
        struct mempolicy        *mempolicy;
        short                il_prev;
        short                pref_node_fork;
    #endif
    #ifdef CONFIG_NUMA_BALANCING
        int                numa_scan_seq;
        unsigned int            numa_scan_period;
        unsigned int            numa_scan_period_max;
        int                numa_preferred_nid;
        unsigned long            numa_migrate_retry;
        /* Migration stamp: */
        u64                node_stamp;
        u64                last_task_numa_placement;
        u64                last_sum_exec_runtime;
        struct callback_head        numa_work;
    
        /*
         * This pointer is only modified for current in syscall and
         * pagefault context (and for tasks being destroyed), so it can be read
         * from any of the following contexts:
         *  - RCU read-side critical section
         *  - current->numa_group from everywhere
         *  - task's runqueue locked, task not running
         */
        struct numa_group __rcu        *numa_group;
    
        /*
         * numa_faults is an array split into four regions:
         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
         * in this precise order.
         *
         * faults_memory: Exponential decaying average of faults on a per-node
         * basis. Scheduling placement decisions are made based on these
         * counts. The values remain static for the duration of a PTE scan.
         * faults_cpu: Track the nodes the process was running on when a NUMA
         * hinting fault was incurred.
         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
         * during the current scan window. When the scan completes, the counts
         * in faults_memory and faults_cpu decay and these values are copied.
         */
        unsigned long            *numa_faults;
        unsigned long            total_numa_faults;
    
        /*
         * numa_faults_locality tracks if faults recorded during the last
         * scan window were remote/local or failed to migrate. The task scan
         * period is adapted based on the locality of the faults with different
         * weights depending on whether they were shared or private faults
         */
        unsigned long            numa_faults_locality[3];
    
        unsigned long            numa_pages_migrated;
    #endif /* CONFIG_NUMA_BALANCING */
    
    #ifdef CONFIG_RSEQ
        struct rseq __user *rseq;
        u32 rseq_sig;
        /*
         * RmW on rseq_event_mask must be performed atomically
         * with respect to preemption.
         */
        unsigned long rseq_event_mask;
    #endif
    
        struct tlbflush_unmap_batch    tlb_ubc;
    
        union {
            refcount_t        rcu_users;
            struct rcu_head        rcu;
        };
    
        /* Cache last used pipe for splice(): */
        struct pipe_inode_info        *splice_pipe;
    
        struct page_frag        task_frag;
    
    #ifdef CONFIG_TASK_DELAY_ACCT
        struct task_delay_info        *delays;
    #endif
    
    #ifdef CONFIG_FAULT_INJECTION
        int                make_it_fail;
        unsigned int            fail_nth;
    #endif
        /*
         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
         * balance_dirty_pages() for a dirty throttling pause:
         */
        int                nr_dirtied;
        int                nr_dirtied_pause;
        /* Start of a write-and-pause period: */
        unsigned long            dirty_paused_when;
    
    #ifdef CONFIG_LATENCYTOP
        int                latency_record_count;
        struct latency_record        latency_record[LT_SAVECOUNT];
    #endif
        /*
         * Time slack values; these are used to round up poll() and
         * select() etc timeout values. These are in nanoseconds.
         */
        u64                timer_slack_ns;
        u64                default_timer_slack_ns;
    
    #ifdef CONFIG_KASAN
        unsigned int            kasan_depth;
    #endif
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
        /* Index of current stored address in ret_stack: */
        int                curr_ret_stack;
        int                curr_ret_depth;
    
        /* Stack of return addresses for return function tracing: */
        struct ftrace_ret_stack        *ret_stack;
    
        /* Timestamp for last schedule: */
        unsigned long long        ftrace_timestamp;
    
        /*
         * Number of functions that haven't been traced
         * because of depth overrun:
         */
        atomic_t            trace_overrun;
    
        /* Pause tracing: */
        atomic_t            tracing_graph_pause;
    #endif
    
    #ifdef CONFIG_TRACING
        /* State flags for use by tracers: */
        unsigned long            trace;
    
        /* Bitmask and counter of trace recursion: */
        unsigned long            trace_recursion;
    #endif /* CONFIG_TRACING */
    
    #ifdef CONFIG_KCOV
        /* Coverage collection mode enabled for this task (0 if disabled): */
        unsigned int            kcov_mode;
    
        /* Size of the kcov_area: */
        unsigned int            kcov_size;
    
        /* Buffer for coverage collection: */
        void                *kcov_area;
    
        /* KCOV descriptor wired with this task or NULL: */
        struct kcov            *kcov;
    #endif
    
    #ifdef CONFIG_MEMCG
        struct mem_cgroup        *memcg_in_oom;
        gfp_t                memcg_oom_gfp_mask;
        int                memcg_oom_order;
    
        /* Number of pages to reclaim on returning to userland: */
        unsigned int            memcg_nr_pages_over_high;
    
        /* Used by memcontrol for targeted memcg charge: */
        struct mem_cgroup        *active_memcg;
    #endif
    
    #ifdef CONFIG_BLK_CGROUP
        struct request_queue        *throttle_queue;
    #endif
    
    #ifdef CONFIG_UPROBES
        struct uprobe_task        *utask;
    #endif
    #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
        unsigned int            sequential_io;
        unsigned int            sequential_io_avg;
    #endif
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
        unsigned long            task_state_change;
    #endif
        int                pagefault_disabled;
    #ifdef CONFIG_MMU
        struct task_struct        *oom_reaper_list;
    #endif
    #ifdef CONFIG_VMAP_STACK
        struct vm_struct        *stack_vm_area;
    #endif
    #ifdef CONFIG_THREAD_INFO_IN_TASK
        /* A live task holds one reference: */
        refcount_t            stack_refcount;
    #endif
    #ifdef CONFIG_LIVEPATCH
        int patch_state;
    #endif
    #ifdef CONFIG_SECURITY
        /* Used by LSM modules for access restriction: */
        void                *security;
    #endif
    
    #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
        unsigned long            lowest_stack;
        unsigned long            prev_lowest_stack;
    #endif
    
        /*
         * New fields for task_struct should be added above here, so that
         * they are included in the randomized portion of task_struct.
         */
        randomized_struct_fields_end
    
        /* CPU-specific state of this task: */
        struct thread_struct        thread;
    
        /*
         * WARNING: on x86, 'thread_struct' contains a variable-sized
         * structure.  It *MUST* be at the end of 'task_struct'.
         *
         * Do not put anything below here!
         */
    };
    
    static inline struct pid *task_pid(struct task_struct *task)
    {
        return task->thread_pid;
    }
    
    /*
     * the helpers to get the task's different pids as they are seen
     * from various namespaces
     *
     * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
     * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
     *                     current.
     * task_xid_nr_ns()  : id seen from the ns specified;
     *
     * see also pid_nr() etc in include/linux/pid.h
     */
    pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
    
    static inline pid_t task_pid_nr(struct task_struct *tsk)
    {
        return tsk->pid;
    }
    
    static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
    }
    
    static inline pid_t task_pid_vnr(struct task_struct *tsk)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
    }
    
    
    static inline pid_t task_tgid_nr(struct task_struct *tsk)
    {
        return tsk->tgid;
    }
    
    /**
     * pid_alive - check that a task structure is not stale
     * @p: Task structure to be checked.
     *
     * Test if a process is not yet dead (at most zombie state)
     * If pid_alive fails, then pointers within the task structure
     * can be stale and must not be dereferenced.
     *
     * Return: 1 if the process is alive. 0 otherwise.
     */
    static inline int pid_alive(const struct task_struct *p)
    {
        return p->thread_pid != NULL;
    }
    
    static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
    }
    
    static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
    }
    
    
    static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
    }
    
    static inline pid_t task_session_vnr(struct task_struct *tsk)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
    }
    
    static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
    }
    
    static inline pid_t task_tgid_vnr(struct task_struct *tsk)
    {
        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
    }
    
    static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
    {
        pid_t pid = 0;
    
        rcu_read_lock();
        if (pid_alive(tsk))
            pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
        rcu_read_unlock();
    
        return pid;
    }
    
    static inline pid_t task_ppid_nr(const struct task_struct *tsk)
    {
        return task_ppid_nr_ns(tsk, &init_pid_ns);
    }
    
    /* Obsolete, do not use: */
    static inline pid_t task_pgrp_nr(struct task_struct *tsk)
    {
        return task_pgrp_nr_ns(tsk, &init_pid_ns);
    }
    
    #define TASK_REPORT_IDLE    (TASK_REPORT + 1)
    #define TASK_REPORT_MAX        (TASK_REPORT_IDLE << 1)
    
    static inline unsigned int task_state_index(struct task_struct *tsk)
    {
        unsigned int tsk_state = READ_ONCE(tsk->state);
        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
    
        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
    
        if (tsk_state == TASK_IDLE)
            state = TASK_REPORT_IDLE;
    
        return fls(state);
    }
    
    static inline char task_index_to_char(unsigned int state)
    {
        static const char state_char[] = "RSDTtXZPI";
    
        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
    
        return state_char[state];
    }
    
    static inline char task_state_to_char(struct task_struct *tsk)
    {
        return task_index_to_char(task_state_index(tsk));
    }
    
    /**
     * is_global_init - check if a task structure is init. Since init
     * is free to have sub-threads we need to check tgid.
     * @tsk: Task structure to be checked.
     *
     * Check if a task structure is the first user space task the kernel created.
     *
     * Return: 1 if the task structure is init. 0 otherwise.
     */
    static inline int is_global_init(struct task_struct *tsk)
    {
        return task_tgid_nr(tsk) == 1;
    }
    
    extern struct pid *cad_pid;
    
    /*
     * Per process flags
     */
    #define PF_IDLE            0x00000002    /* I am an IDLE thread */
    #define PF_EXITING        0x00000004    /* Getting shut down */
    #define PF_VCPU            0x00000010    /* I'm a virtual CPU */
    #define PF_WQ_WORKER        0x00000020    /* I'm a workqueue worker */
    #define PF_FORKNOEXEC        0x00000040    /* Forked but didn't exec */
    #define PF_MCE_PROCESS        0x00000080      /* Process policy on mce errors */
    #define PF_SUPERPRIV        0x00000100    /* Used super-user privileges */
    #define PF_DUMPCORE        0x00000200    /* Dumped core */
    #define PF_SIGNALED        0x00000400    /* Killed by a signal */
    #define PF_MEMALLOC        0x00000800    /* Allocating memory */
    #define PF_NPROC_EXCEEDED    0x00001000    /* set_user() noticed that RLIMIT_NPROC was exceeded */
    #define PF_USED_MATH        0x00002000    /* If unset the fpu must be initialized before use */
    #define PF_USED_ASYNC        0x00004000    /* Used async_schedule*(), used by module init */
    #define PF_NOFREEZE        0x00008000    /* This thread should not be frozen */
    #define PF_FROZEN        0x00010000    /* Frozen for system suspend */
    #define PF_KSWAPD        0x00020000    /* I am kswapd */
    #define PF_MEMALLOC_NOFS    0x00040000    /* All allocation requests will inherit GFP_NOFS */
    #define PF_MEMALLOC_NOIO    0x00080000    /* All allocation requests will inherit GFP_NOIO */
    #define PF_LESS_THROTTLE    0x00100000    /* Throttle me less: I clean memory */
    #define PF_KTHREAD        0x00200000    /* I am a kernel thread */
    #define PF_RANDOMIZE        0x00400000    /* Randomize virtual address space */
    #define PF_SWAPWRITE        0x00800000    /* Allowed to write to swap */
    #define PF_MEMSTALL        0x01000000    /* Stalled due to lack of memory */
    #define PF_UMH            0x02000000    /* I'm an Usermodehelper process */
    #define PF_NO_SETAFFINITY    0x04000000    /* Userland is not allowed to meddle with cpus_mask */
    #define PF_MCE_EARLY        0x08000000      /* Early kill for mce process policy */
    #define PF_MEMALLOC_NOCMA    0x10000000    /* All allocation request will have _GFP_MOVABLE cleared */
    #define PF_FREEZER_SKIP        0x40000000    /* Freezer should not count it as freezable */
    #define PF_SUSPEND_TASK        0x80000000      /* This thread called freeze_processes() and should not be frozen */
    
    /*
     * Only the _current_ task can read/write to tsk->flags, but other
     * tasks can access tsk->flags in readonly mode for example
     * with tsk_used_math (like during threaded core dumping).
     * There is however an exception to this rule during ptrace
     * or during fork: the ptracer task is allowed to write to the
     * child->flags of its traced child (same goes for fork, the parent
     * can write to the child->flags), because we're guaranteed the
     * child is not running and in turn not changing child->flags
     * at the same time the parent does it.
     */
    #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
    #define set_stopped_child_used_math(child)    do { (child)->flags |= PF_USED_MATH; } while (0)
    #define clear_used_math()            clear_stopped_child_used_math(current)
    #define set_used_math()                set_stopped_child_used_math(current)
    
    #define conditional_stopped_child_used_math(condition, child) 
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
    
    #define conditional_used_math(condition)    conditional_stopped_child_used_math(condition, current)
    
    #define copy_to_stopped_child_used_math(child) 
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
    
    /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
    #define tsk_used_math(p)            ((p)->flags & PF_USED_MATH)
    #define used_math()                tsk_used_math(current)
    
    static inline bool is_percpu_thread(void)
    {
    #ifdef CONFIG_SMP
        return (current->flags & PF_NO_SETAFFINITY) &&
            (current->nr_cpus_allowed  == 1);
    #else
        return true;
    #endif
    }
    
    /* Per-process atomic flags. */
    #define PFA_NO_NEW_PRIVS        0    /* May not gain new privileges. */
    #define PFA_SPREAD_PAGE            1    /* Spread page cache over cpuset */
    #define PFA_SPREAD_SLAB            2    /* Spread some slab caches over cpuset */
    #define PFA_SPEC_SSB_DISABLE        3    /* Speculative Store Bypass disabled */
    #define PFA_SPEC_SSB_FORCE_DISABLE    4    /* Speculative Store Bypass force disabled*/
    #define PFA_SPEC_IB_DISABLE        5    /* Indirect branch speculation restricted */
    #define PFA_SPEC_IB_FORCE_DISABLE    6    /* Indirect branch speculation permanently restricted */
    #define PFA_SPEC_SSB_NOEXEC        7    /* Speculative Store Bypass clear on execve() */
    
    #define TASK_PFA_TEST(name, func)                    
        static inline bool task_##func(struct task_struct *p)        
        { return test_bit(PFA_##name, &p->atomic_flags); }
    
    #define TASK_PFA_SET(name, func)                    
        static inline void task_set_##func(struct task_struct *p)    
        { set_bit(PFA_##name, &p->atomic_flags); }
    
    #define TASK_PFA_CLEAR(name, func)                    
        static inline void task_clear_##func(struct task_struct *p)    
        { clear_bit(PFA_##name, &p->atomic_flags); }
    
    TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
    TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
    
    TASK_PFA_TEST(SPREAD_PAGE, spread_page)
    TASK_PFA_SET(SPREAD_PAGE, spread_page)
    TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
    
    TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
    TASK_PFA_SET(SPREAD_SLAB, spread_slab)
    TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
    
    TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
    TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
    TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
    
    TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
    TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
    TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
    
    TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
    TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
    
    TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
    TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
    TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
    
    TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
    TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
    
    static inline void
    current_restore_flags(unsigned long orig_flags, unsigned long flags)
    {
        current->flags &= ~flags;
        current->flags |= orig_flags & flags;
    }
    
    extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
    extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
    #ifdef CONFIG_SMP
    extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
    extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
    #else
    static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
    {
    }
    static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
    {
        if (!cpumask_test_cpu(0, new_mask))
            return -EINVAL;
        return 0;
    }
    #endif
    
    extern int yield_to(struct task_struct *p, bool preempt);
    extern void set_user_nice(struct task_struct *p, long nice);
    extern int task_prio(const struct task_struct *p);
    
    /**
     * task_nice - return the nice value of a given task.
     * @p: the task in question.
     *
     * Return: The nice value [ -20 ... 0 ... 19 ].
     */
    static inline int task_nice(const struct task_struct *p)
    {
        return PRIO_TO_NICE((p)->static_prio);
    }
    
    extern int can_nice(const struct task_struct *p, const int nice);
    extern int task_curr(const struct task_struct *p);
    extern int idle_cpu(int cpu);
    extern int available_idle_cpu(int cpu);
    extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
    extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
    extern int sched_setattr(struct task_struct *, const struct sched_attr *);
    extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
    extern struct task_struct *idle_task(int cpu);
    
    /**
     * is_idle_task - is the specified task an idle task?
     * @p: the task in question.
     *
     * Return: 1 if @p is an idle task. 0 otherwise.
     */
    static inline bool is_idle_task(const struct task_struct *p)
    {
        return !!(p->flags & PF_IDLE);
    }
    
    extern struct task_struct *curr_task(int cpu);
    extern void ia64_set_curr_task(int cpu, struct task_struct *p);
    
    void yield(void);
    
    union thread_union {
    #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
        struct task_struct task;
    #endif
    #ifndef CONFIG_THREAD_INFO_IN_TASK
        struct thread_info thread_info;
    #endif
        unsigned long stack[THREAD_SIZE/sizeof(long)];
    };
    
    #ifndef CONFIG_THREAD_INFO_IN_TASK
    extern struct thread_info init_thread_info;
    #endif
    
    extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
    
    #ifdef CONFIG_THREAD_INFO_IN_TASK
    static inline struct thread_info *task_thread_info(struct task_struct *task)
    {
        return &task->thread_info;
    }
    #elif !defined(__HAVE_THREAD_FUNCTIONS)
    # define task_thread_info(task)    ((struct thread_info *)(task)->stack)
    #endif
    
    /*
     * find a task by one of its numerical ids
     *
     * find_task_by_pid_ns():
     *      finds a task by its pid in the specified namespace
     * find_task_by_vpid():
     *      finds a task by its virtual pid
     *
     * see also find_vpid() etc in include/linux/pid.h
     */
    
    extern struct task_struct *find_task_by_vpid(pid_t nr);
    extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
    
    /*
     * find a task by its virtual pid and get the task struct
     */
    extern struct task_struct *find_get_task_by_vpid(pid_t nr);
    
    extern int wake_up_state(struct task_struct *tsk, unsigned int state);
    extern int wake_up_process(struct task_struct *tsk);
    extern void wake_up_new_task(struct task_struct *tsk);
    
    #ifdef CONFIG_SMP
    extern void kick_process(struct task_struct *tsk);
    #else
    static inline void kick_process(struct task_struct *tsk) { }
    #endif
    
    extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
    
    static inline void set_task_comm(struct task_struct *tsk, const char *from)
    {
        __set_task_comm(tsk, from, false);
    }
    
    extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
    #define get_task_comm(buf, tsk) ({            
        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);    
        __get_task_comm(buf, sizeof(buf), tsk);        
    })
    
    #ifdef CONFIG_SMP
    void scheduler_ipi(void);
    extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
    #else
    static inline void scheduler_ipi(void) { }
    static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
    {
        return 1;
    }
    #endif
    
    /*
     * Set thread flags in other task's structures.
     * See asm/thread_info.h for TIF_xxxx flags available:
     */
    static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
    {
        set_ti_thread_flag(task_thread_info(tsk), flag);
    }
    
    static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
    {
        clear_ti_thread_flag(task_thread_info(tsk), flag);
    }
    
    static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
                          bool value)
    {
        update_ti_thread_flag(task_thread_info(tsk), flag, value);
    }
    
    static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
    {
        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
    }
    
    static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
    {
        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
    }
    
    static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
    {
        return test_ti_thread_flag(task_thread_info(tsk), flag);
    }
    
    static inline void set_tsk_need_resched(struct task_struct *tsk)
    {
        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
    }
    
    static inline void clear_tsk_need_resched(struct task_struct *tsk)
    {
        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
    }
    
    static inline int test_tsk_need_resched(struct task_struct *tsk)
    {
        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
    }
    
    /*
     * cond_resched() and cond_resched_lock(): latency reduction via
     * explicit rescheduling in places that are safe. The return
     * value indicates whether a reschedule was done in fact.
     * cond_resched_lock() will drop the spinlock before scheduling,
     */
    #ifndef CONFIG_PREEMPTION
    extern int _cond_resched(void);
    #else
    static inline int _cond_resched(void) { return 0; }
    #endif
    
    #define cond_resched() ({            
        ___might_sleep(__FILE__, __LINE__, 0);    
        _cond_resched();            
    })
    
    extern int __cond_resched_lock(spinlock_t *lock);
    
    #define cond_resched_lock(lock) ({                
        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);
        __cond_resched_lock(lock);                
    })
    
    static inline void cond_resched_rcu(void)
    {
    #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
        rcu_read_unlock();
        cond_resched();
        rcu_read_lock();
    #endif
    }
    
    /*
     * Does a critical section need to be broken due to another
     * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
     * but a general need for low latency)
     */
    static inline int spin_needbreak(spinlock_t *lock)
    {
    #ifdef CONFIG_PREEMPTION
        return spin_is_contended(lock);
    #else
        return 0;
    #endif
    }
    
    static __always_inline bool need_resched(void)
    {
        return unlikely(tif_need_resched());
    }
    
    /*
     * Wrappers for p->thread_info->cpu access. No-op on UP.
     */
    #ifdef CONFIG_SMP
    
    static inline unsigned int task_cpu(const struct task_struct *p)
    {
    #ifdef CONFIG_THREAD_INFO_IN_TASK
        return READ_ONCE(p->cpu);
    #else
        return READ_ONCE(task_thread_info(p)->cpu);
    #endif
    }
    
    extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
    
    #else
    
    static inline unsigned int task_cpu(const struct task_struct *p)
    {
        return 0;
    }
    
    static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
    {
    }
    
    #endif /* CONFIG_SMP */
    
    /*
     * In order to reduce various lock holder preemption latencies provide an
     * interface to see if a vCPU is currently running or not.
     *
     * This allows us to terminate optimistic spin loops and block, analogous to
     * the native optimistic spin heuristic of testing if the lock owner task is
     * running or not.
     */
    #ifndef vcpu_is_preempted
    static inline bool vcpu_is_preempted(int cpu)
    {
        return false;
    }
    #endif
    
    extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
    extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
    
    #ifndef TASK_SIZE_OF
    #define TASK_SIZE_OF(tsk)    TASK_SIZE
    #endif
    
    #ifdef CONFIG_RSEQ
    
    /*
     * Map the event mask on the user-space ABI enum rseq_cs_flags
     * for direct mask checks.
     */
    enum rseq_event_mask_bits {
        RSEQ_EVENT_PREEMPT_BIT    = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
        RSEQ_EVENT_SIGNAL_BIT    = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
        RSEQ_EVENT_MIGRATE_BIT    = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
    };
    
    enum rseq_event_mask {
        RSEQ_EVENT_PREEMPT    = (1U << RSEQ_EVENT_PREEMPT_BIT),
        RSEQ_EVENT_SIGNAL    = (1U << RSEQ_EVENT_SIGNAL_BIT),
        RSEQ_EVENT_MIGRATE    = (1U << RSEQ_EVENT_MIGRATE_BIT),
    };
    
    static inline void rseq_set_notify_resume(struct task_struct *t)
    {
        if (t->rseq)
            set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
    }
    
    void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
    
    static inline void rseq_handle_notify_resume(struct ksignal *ksig,
                             struct pt_regs *regs)
    {
        if (current->rseq)
            __rseq_handle_notify_resume(ksig, regs);
    }
    
    static inline void rseq_signal_deliver(struct ksignal *ksig,
                           struct pt_regs *regs)
    {
        preempt_disable();
        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
        preempt_enable();
        rseq_handle_notify_resume(ksig, regs);
    }
    
    /* rseq_preempt() requires preemption to be disabled. */
    static inline void rseq_preempt(struct task_struct *t)
    {
        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
        rseq_set_notify_resume(t);
    }
    
    /* rseq_migrate() requires preemption to be disabled. */
    static inline void rseq_migrate(struct task_struct *t)
    {
        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
        rseq_set_notify_resume(t);
    }
    
    /*
     * If parent process has a registered restartable sequences area, the
     * child inherits. Unregister rseq for a clone with CLONE_VM set.
     */
    static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
    {
        if (clone_flags & CLONE_VM) {
            t->rseq = NULL;
            t->rseq_sig = 0;
            t->rseq_event_mask = 0;
        } else {
            t->rseq = current->rseq;
            t->rseq_sig = current->rseq_sig;
            t->rseq_event_mask = current->rseq_event_mask;
        }
    }
    
    static inline void rseq_execve(struct task_struct *t)
    {
        t->rseq = NULL;
        t->rseq_sig = 0;
        t->rseq_event_mask = 0;
    }
    
    #else
    
    static inline void rseq_set_notify_resume(struct task_struct *t)
    {
    }
    static inline void rseq_handle_notify_resume(struct ksignal *ksig,
                             struct pt_regs *regs)
    {
    }
    static inline void rseq_signal_deliver(struct ksignal *ksig,
                           struct pt_regs *regs)
    {
    }
    static inline void rseq_preempt(struct task_struct *t)
    {
    }
    static inline void rseq_migrate(struct task_struct *t)
    {
    }
    static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
    {
    }
    static inline void rseq_execve(struct task_struct *t)
    {
    }
    
    #endif
    
    void __exit_umh(struct task_struct *tsk);
    
    static inline void exit_umh(struct task_struct *tsk)
    {
        if (unlikely(tsk->flags & PF_UMH))
            __exit_umh(tsk);
    }
    
    #ifdef CONFIG_DEBUG_RSEQ
    
    void rseq_syscall(struct pt_regs *regs);
    
    #else
    
    static inline void rseq_syscall(struct pt_regs *regs)
    {
    }
    
    #endif
    
    const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
    char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
    int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
    
    const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
    const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
    const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
    
    int sched_trace_rq_cpu(struct rq *rq);
    
    const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
    
    #endif
  • 相关阅读:
    解决-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment variable and mvn script match.
    .net-C#代码判断
    ashx-auth-黑色简洁验证码
    ylbtech-权限管理-数据库设计-功能权限管理技术
    ylbtech-Model-Account(通用账户模块设计)
    ADO.NET访问Access(文本数据库)数据操作(CRUD)
    连接数据库的五种不同的方式
    ylbtech-数据库设计与优化-对作为复选框/单选列表的集合表的设计
    ylbtech-cnblogs(博客园)-数据库设计-7,News(新闻)
    ylbtech-cnblogs(博客园)-数据库设计-2,Admin(用户后台)-用户自定义参数设置
  • 原文地址:https://www.cnblogs.com/nanfengnan/p/14931560.html
Copyright © 2011-2022 走看看