zoukankan      html  css  js  c++  java
  • 机器学习中的数学系列-微积分

    前言:这里只罗列出一些重要的点,一来是知识点的梳理,二来便于查阅。

    1.夹逼定理

    英文叫做Squeeze theorem。维基百科是这样定义的:

    Let I be an interval having the point a as a limit point. Let fg, and h be functions defined on I, except possibly at a itself. Suppose that for every x in Inot equal to a, we have:

    ( g(x)leq f(x)leq h(x) )

    and also suppose that:

    ( lim_{x ightarrow a}{g(x)} = lim_{x ightarrow a}{h(x)} = L )

    then:

    ( lim_{x ightarrow a}{f(x)} = L )

    • The functions g and f are said to be lower and upper bounds of f.
    • Here, a is not required to lie in the interior of I. Indeed, if a is an endpoint of I , then the above limits are left- or right-hand limits.
    • A similar statement holds for infinite intervals: for example, if I = (0,infinite),then the conclusion holds, taking the limits as x -> infinite.

     如果不纠结于数学的严谨性的话,夹逼定理的意思就是上线和下线都逼近于L,那么作为被夹在中间的f(x)也注定会逼近于L。

    2.泰勒展开式

    这个还是很有用的,它可以把很多复杂的函数近似成容易处理多项式。可导函数f(x)的泰勒展开式是:

    作为一种special case,还有一个麦克劳林展开式

    这个是在0点展开式的泰勒展开。

    一些常用的泰勒展开式是需要记住的,比如-ln(x)在1的展开式是1-x,这个以后补。

    3.导数

    一阶导数曲为线的斜率,衡量曲线变化的快慢和方向。二阶导数反应曲线的凹凸性。
    下面是常用的导数公式,这个主要靠背。

    C'=0

    (xn)' = nxn-1

    (sin x)= cos x

    (cos x)'=-sinx

    (ax)' = axlna

    (ex)' = ex

    (logax)' = (1/x)logae

    (ln x)' = (1/x)

    (u+v)= u'+v'

    (uv)' = u'v+uv'

  • 相关阅读:
    GitHub入门之一:使用github下载项目
    Android Fragment 真正的完全解析(下)
    Android Fragment 真正的完全解析(上)
    c# 发送邮件
    SmartThreadPool
    虚拟机
    相关系数
    为枚举类型添加说明 zt
    MD5
    hashcode
  • 原文地址:https://www.cnblogs.com/naniJser/p/5641962.html
Copyright © 2011-2022 走看看