zoukankan      html  css  js  c++  java
  • POJ2689 Prime Distance

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.
    

    Source

     
    题解:
     
    由于L和U太大,直接求解会爆掉
    注意到int范围内的合数,其最小质因子不会超过sqrt(int),即不超过50000
    考虑先找出50000以内的素数,再用这些素数去筛掉[L,U]内的合数,然后统计即可
    另外注意1
     
    代码如下:
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<cstdlib>
    #define MAXN 50000
    using namespace std;
    int L,U,cnt=0,tot=0,a1,b1,a2,b2,lg=0,sg=1e9;
    int prime1[MAXN],prime2[1000005];
    bool check[MAXN],mark[1000005];
    void get_prime()
    {
        for(int i=2;i<=MAXN;i++)
            {
                if(check[i])
                   prime1[++cnt]=i;
                for(int j=1;j<=cnt&&prime1[j]*i<=MAXN;j++)
                    {
                        check[i*prime1[j]]=false;
                        if(i%prime1[j]==0)
                           break;
                    }   
            }
    }
    int main()
    {
        memset(check,true,sizeof(check));
        get_prime();
        while(scanf("%d%d",&L,&U)!=EOF)
              {
                    memset(mark,true,sizeof(mark));
                    if(L==1)
                       mark[1]=false;
                    for(int i=1;i<=cnt;i++)
                        {
                              if(prime1[i]>U)
                                 break;
                              int l=L/prime1[i]>=2?L/prime1[i]:2,r=U/prime1[i];
                              for(int j=l;j<=r;j++)
                                  mark[prime1[i]*j-L+1]=false;
                        }
                  for(int i=1;i<=U-L+1;i++)
                      {
                          if(mark[i])
                             prime2[++tot]=i; 
                      }          
                  for(int i=2;i<=tot;i++)
                      {
                            int dis=prime2[i]-prime2[i-1];
                            if(dis>lg)
                               {
                                   lg=dis;
                                   a1=prime2[i-1]+L-1;
                                   b1=prime2[i]+L-1;
                               }
                            if(dis<sg)
                             {
                                  sg=dis;
                                  a2=prime2[i-1]+L-1;
                                  b2=prime2[i]+L-1;
                             }   
                      }
                  if(tot<2)
                     printf("There are no adjacent primes.
    ");    
                  else    
                     printf("%d,%d are closest, %d,%d are most distant.
    ",a2,b2,a1,b1);
                  tot=0,lg=0,sg=1e9;               
              }   
        return 0;
    }
    View Code
  • 相关阅读:
    cesium计算当前地图范围extent以及近似当前层级zoom
    Cesium专栏-雷达遮罩动态扫描(附源码下载)
    Cesium专栏-地形开挖2-任意多边形开挖(附源码下载)
    Cesium 限制相机进入地下
    Cesium专栏-terrain地形、3dtiles模型、gltf模型 高度采样
    GeoTools介绍、环境安装、读取shp文件并显示
    基于vue+leaflet+echart的足迹分享评论平台
    10个JavaScript调试技巧,帮你更好、更快地调试代码
    后台权限管理,看这篇就够了
    编程狮-在线工具
  • 原文地址:https://www.cnblogs.com/nanjolno/p/9306297.html
Copyright © 2011-2022 走看看