zoukankan      html  css  js  c++  java
  • Linear Algebra lecture6 note

    Vector spaces and subspaces

    Column space of A solving Ax=b

    Null space of A

     


    Vector space requirements v+w and cv are in the space

    All combs cv+dw are in the space

    向量空间对数乘和加法需要封闭

    subspace of R^3:

    Line( L) through zero vector  is a subspace of R^3

    Plane( P) through zero vector is a subspace of R^3

    then we got 2 subspaces: P and L

    P∪L means all vectors in P or L or both, this is not a subspace, 原因在于对加法不封闭,加和后所得的可能既不在P上,也不在L上

    P∩L means all vectors in both P and L, this is a subspace, 交点为zero

     


    Column space of A(列空间),记作C(A)

    example:

    image     is a subspace of R^4, 记作 C ( A)

    思考:Does Ax=b have a solution for every b? Which b’s allow this system to be solved?

    回答:No. 4 equations, 3 unknowns, we can solve Ax=b exactly when b is in C( A)

    image

    接下来考虑nullspace of A: all solutions to Ax=0

    image

    now write some solutions, such as

    image

    观察规律可总结出一般形式

    Check the solution to Ax=0 always give a subspace

    If Av=0 and Aw=0, then A(v+w)=0, then A(12v)=0,即对加法和数乘都封闭

     

    another example:

    image

    解中不包含zero vector,故不构成space,那么它的解是什么样的呢?

    image是不穿过原点的平面或直线

    summary:

    subspace:1、combination of several vectors

                           2、从方程组中通过让x满足特定条件

  • 相关阅读:
    rabbitmq fanout模式(发布订阅)
    rabbitmq php 限流
    rabbitmq 延迟队列 php
    rabbitmq 死信队列 php
    php rabbitmq发送消息并判断消息是否发送成功 ack comfirm机制
    php使用activemq
    golang 冒泡排序实现
    依耐项属性- 在需要使用的情况下添加
    Path 详解 之WPF
    WPF FrameWorkElement->UIElement->Visual
  • 原文地址:https://www.cnblogs.com/nanocare/p/6015487.html
Copyright © 2011-2022 走看看