zoukankan      html  css  js  c++  java
  • PRML读书笔记_绪论

    一、基本名词##

    泛化(generalization)###

    训练集所训练的模型对新数据的适用程度。

    监督学习(supervised learning)###

    训练数据的样本包含输入向量以及对应的目标向量。

    • 分类( classification ):给每个输入向量分配到有限数量离散标签中的一个。
    • 回归( regression ):输出由一个或者多个连续变量组成。

    无监督学习(unsupervised learning)###

    训练数据由一组输入向量 x 组成,没有任何对应的目标值。

    • 聚类(clustering):发现数据中相似样本的分组。
    • 密度估计(density estimation):决定输入空间中数据的分布。

    反馈学习(reinforcement learning)###

    在给定的条件下,找到合适的动作,使得奖励达到最大值。学习问题没有给定最优输出的用例。这些用例必须在一系列的实验和错误中被发现。
    反馈学习的一个通用的特征是探索( exploration )和利用( exploitation )的折中,过分地集中于探索或者利用都会产生较差的结果。

    • 探索:是指系统尝试新类型的动作,
    • 利用:是指系统使用已知能产生较高奖励的动作。

    二、概率论##

    1.概率论的两个基本规则:加和规则( sumrule )、乘积规则( product rule )###

    2.贝叶斯定理( Bayes' theorem )###


    贝叶斯定理中的分母可以用出现在分子中的项表示:

    • 先验概率( prior probability ):(p(Y)) 在未知(X)分布时,我们已知(Y)分布,顾称(p(Y))为先验。
    • 后验概率( posterior probability ):(p(Y|X)) 在得知(X)分布后,加入(p(X))的约束可以的到条件概率(p(Y|X)),称之为后验。

    3.概率密度###

    概率密度( probability density )####


    满足下面两个条件:

    一个变量的变化(x = g(y)) , 那么函数(f (x))就变成了$ f ̃ (y) = f (g(y))$

    累积分布函数( cumulative distribution function )####

    概率密度函数加和规则和乘积规则####

    4.期望和协方差###

    期望( expectation )####

    离散变量

    连续变量

    方差( variance )####


    可以化为:

    协方差( covariance )####

    协方差是对两个随机变量 x 和 y而言:

    在两个随机向量 x 和 y 的情形下,协方差是一个矩阵:

  • 相关阅读:
    关于烂代码的那些事(中)
    关于烂代码的那些事(上)
    关于烂代码的那些事(上)
    Maven学习总结(14)——Maven 多模块项目如何分工?
    Maven学习总结(14)——Maven 多模块项目如何分工?
    优秀Java程序员必备10招
    优秀Java程序员必备10招
    SSO单点登录学习总结(3)—— 基于CAS实现单点登录实例
    SSO单点登录学习总结(3)—— 基于CAS实现单点登录实例
    SSO单点登录学习总结(2)——基于Cookie+fliter单点登录实例
  • 原文地址:https://www.cnblogs.com/narjaja/p/9256121.html
Copyright © 2011-2022 走看看