zoukankan      html  css  js  c++  java
  • PRML读书笔记_绪论曲线拟合部分

    一、最小化误差函数拟合##

    正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值。这种惩罚项最简单的形式采用所有系数的平方和的形式。这推导出了误差函数的修改后的形式:


    在效果上, λ 控制了模型的复杂性,因此决定了过拟合的程度。

    二、贝叶斯曲线拟合##

    1.正态分布( normal distribution )或者高斯分布( Gaussian distribution )###

    对于一元实值变量 x ,高斯分布被定义为:

    它由两个参数控制:(μ) ,被叫做均值( mean ),以及(σ^2) ,被叫做方差( variance )。方差的平方根,由 (σ) 给定,被叫做标准差( standard deviation )。方差的倒数,记作 (β = frac{1}{σ^2}) ,被叫做精度( precision )。
    D 维向量 x 的高斯分布:

    2.曲线拟合###

    曲线拟合问题的目标是能够根据 N 个输入 (x = (x_1 , . . . , x_N )^T) 组成的数据集和它们对应的目标值 (t = (t_1 , . . . , t_N )^T) ,在给出输入变量 x 的新值的情况下,对目标变量 t 进行预测。
    对应的 t 值服从高斯分布,分布的均值为 y(x, w) ,有:

    图形化表示:

    用训练数据$ {x, t}$ ,通过最大似然方法,来决定未知参数 w 和 β 的值,然函数为:

    对数似然函数:

    求其最大值就可以求得(w)。进一步确定精度参数 (β):

  • 相关阅读:
    认识jeecms开源项目
    初识eclipse及配置相关
    Html5 Video的使用
    实现渐变色案例
    区域路由的注册机制
    MVC特性路由的提供机制
    再谈async与await
    同步 VS 异步
    C#多线程中的异常处理
    C#多线程基础
  • 原文地址:https://www.cnblogs.com/narjaja/p/9263757.html
Copyright © 2011-2022 走看看