zoukankan      html  css  js  c++  java
  • Heapsort

    Chapter 6: Heapsort

    Chapter 6: Heapsort

    Overview

    In this chapter, we introduce another sorting algorithm. Like merge sort, but unlike insertion sort, heapsort's running time is O(n lg n). Like insertion sort, but unlike merge sort, heapsort sorts in place: only a constant number of array elements are stored outside the input array at any time. Thus, heapsort combines the better attributes of the two sorting algorithms we have already discussed.

    Heapsort also introduces another algorithm design technique: the use of a data structure, in this case one we call a "heap," to manage information during the execution of the algorithm. Not only is the heap data structure useful for heapsort, but it also makes an efficient priority queue. The heap data structure will reappear in algorithms in later chapters.

    We note that the term "heap" was originally coined in the context of heapsort, but it has since come to refer to "garbage-collected storage," such as the programming languages Lisp and Java provide. Our heap data structure is not garbage-collected storage, and whenever we refer to heaps in this book, we shall mean the structure defined in this chapter.

     

    我的代码:

     

    代码
    const n=10;
    type arr=array[1..n] of integer;
    var i,t:integer;
    a:arr;
    procedure heap(var a:arr;l,r:integer);
    var i,j,k,t:integer;
    begin
    i:
    =2*l;j:=i+1;
    if (i<=r ) and (a[i]>a[l]) then k:=i
    else k:=l;
    if (j<=r ) and (a[j]>a[k]) then k:=j;

    if k<>l then begin
    t:
    =a[l];a[l]:=a[k];a[k]:=t;
    heap(a,k,r);
    end;
    end;
    begin
    for i:=1 to n do read(a[i]);
    for i:=n div 2 downto 1 do heap(a,i,n);
    for i:=1 to n-1 do
    begin
    write(a[
    1],' ');
    t:
    =a[1];
    a[
    1]:=a[n-i+1];
    a[n
    -i+1]:=t;
    heap(a,
    1,n-i);
    end;
    writeln(a[
    1]);
    end.

    or

    代码
    program duipx;
    const n=8;
    type arr=array[1..n] of integer;
    var a:arr;i:integer;
    procedure sift(var a:arr;l,m:integer);
    var i,j, t:integer;
    begin
    i:
    =l;j:=2*i;t:=a[i];
    while j<=m do
    begin
    if (j<m) and (a[j]>a[j+1]) then j:=j+1;
    if t>a[j] then
    begin a[i]:=a[j];i:=j;j:=2*i; end
    else exit;
    a[i]:
    =t;
    end;

    end;
    begin
    for i:=1 to n do read(a[i]);
    for i:=(n div 2) downto 1 do
    sift(a,i,n);
    for i:=n downto 2 do
    begin
    write(a[
    1]:4);
    a[
    1]:=a[i];
    sift(a,
    1,i-1);
    end;
    writeln(a[
    1]:4);
    end.
  • 相关阅读:
    从1.5k到18k, 一个程序员的5年成长之路
    我是如何准备技术面试的
    10个惊艳的Ruby单行代码
    经典Spring面试题和答案
    数据分析应该要避免的6个错误
    代码重构的实战经验和那些坑
    勾勒物联网与大数据的数据中心路线图
    共筑Spark大数据引擎的七大工具
    es6学习总结(一)
    vue-cli搭建与vue-router(路由配置)
  • 原文地址:https://www.cnblogs.com/nbalive2001/p/1873351.html
Copyright © 2011-2022 走看看