zoukankan      html  css  js  c++  java
  • [HDU3498] whosyourdaddy

    Description
    sevenzero liked Warcraft very much, but he haven't practiced it for several years after being addicted to algorithms. Now, though he is playing with computer, he nearly losed and only his hero Pit Lord left. sevenzero is angry, he decided to cheat to turn defeat into victory. So he entered "whosyourdaddy", that let Pit Lord kill any hostile unit he damages immediately. As all Warcrafters know, Pit Lord masters a skill called Cleaving Attack and he can damage neighbour units of the unit he attacks. Pit Lord can choice a position to attack to avoid killing partial neighbour units sevenzero don't want to kill. Because sevenzero wants to win as soon as possible, he needs to know the minimum attack times to eliminate all the enemys.
    Input
    There are several cases. For each case, first line contains two integer N (2 ≤ N ≤ 55) and M (0 ≤ M ≤ N*N),and N is the number of hostile units. Hostile units are numbered from 1 to N. For the subsequent M lines, each line contains two integers A and B, that means A and B are neighbor. Each unit has no more than 4 neighbor units. The input is terminated by EOF.
    Output
    One line shows the minimum attack times for each case.
    Sample Input
    5 4
    1 2
    1 3
    2 4
    4 5
    6 4
    1 2
    1 3
    1 4
    4 5
    Sample Output
    2
    3
    传说中的DLX在这里就显现出其与众不同的优势,将同伙连成DLX,然后计算最小值
     1 #include<bits/stdc++.h>
     2 #define FOR(i,p,X) for(int i=X[p];i!=p;i=X[i])
     3 #define For(i,a,b) for(int i=(a),i_end=(b);i<=i_end;++i)
     4 using namespace std;
     5 const int N=60;
     6 int n,m,ans;
     7 vector<int>G[N];
     8 struct DLX{  
     9     int L[N*N],R[N*N],U[N*N],D[N*N];
    10     int C[N*N],H[N],cnt[N],vis[N],id;
    11     void init(){  
    12         For(i,0,n){  
    13             cnt[i]=0;U[i]=D[i]=i;  
    14             L[i+1]=i;R[i]=i+1;  
    15         }  
    16         R[n]=0;id=n+1;  
    17         memset(H,-1,sizeof(H));  
    18     }  
    19     void Link(int r,int c){  
    20         cnt[c]++;C[id]=c;  
    21         U[id]=U[c];D[U[c]]=id;  
    22         D[id]=c;U[c]=id;  
    23         if(!~H[r]) H[r]=L[id]=R[id]=id;  
    24         else{  
    25             L[id]=L[H[r]];R[L[H[r]]]=id;  
    26             R[id]=H[r];L[H[r]]=id;  
    27         }  
    28         id++;  
    29     }
    30     void Remove(int sz){
    31         FOR(j,sz,D)L[R[j]]=L[j],R[L[j]]=R[j];  
    32     }  
    33     void Resume(int sz){  
    34         FOR(j,sz,D)L[R[j]]=R[L[j]]=j;  
    35     } 
    36     int h(){  
    37         int res=0;  
    38         memset(vis,0,sizeof(vis));  
    39         FOR(i,0,R){
    40             if(vis[i])continue;  
    41             ++res;  
    42             FOR(j,i,D)FOR(k,j,R)
    43                 vis[C[k]]=1;
    44         }
    45         return res;  
    46     }  
    47     void Dance(int k){  
    48         if(k+h()>=ans)return;  
    49         int pos=R[0];
    50         if(!pos){  
    51             if(k<ans)ans=k;  
    52             return;  
    53         }
    54         FOR(i,0,R)if(cnt[pos]>cnt[i])pos=i; 
    55         FOR(i,pos,D){
    56             Remove(i);
    57             FOR(j,i,R)Remove(j);  
    58             Dance(k+1);  
    59             FOR(j,i,R)Resume(j);  
    60             Resume(i);  
    61         }
    62     }
    63 }dlx;
    64 int main(){
    65     while(scanf("%d%d",&n,&m)!=-1){  
    66         dlx.init();
    67         For(i,0,n)G[i].clear(),G[i].push_back(i);
    68         For(i,1,m){
    69             int u,v;
    70             scanf("%d%d",&u,&v);  
    71             G[u].push_back(v);G[v].push_back(u);  
    72         }
    73         For(i,1,n)For(j,0,G[i].size()-1)
    74             dlx.Link(i,G[i][j]);
    75         ans=n;
    76         dlx.Dance(0);  
    77         printf("%d
    ",ans);
    78     }
    79     return 0;  
    80 }
  • 相关阅读:
    从xml中改变checkBox大小和形状
    Android 数字签名学习笔记
    Android 说说钟表控件
    Android中选项卡TabHost的基本使用
    Android 实现图片反转
    Android openfire插件开发
    最大递增子序列——[Usaco2006 Oct]Hungry Cows饥饿的奶牛
    矩阵二分乘法(可做模板)——hdu1575
    树形递归——1621: [Usaco2008 Open]Roads Around The Farm
    规律题——Codeforces Beta Round #11 B
  • 原文地址:https://www.cnblogs.com/ndqzhang1111/p/7172139.html
Copyright © 2011-2022 走看看