zoukankan      html  css  js  c++  java
  • 图的遍历-DFS/BFS

    图的遍历
    调试版

    // 基于C语言的图的遍历
    
    #include <stdlib.h>
    #include <stdio.h>
    
    #define MAX_EDGE 15
    #define MAX_SIZE 9
    #define MAX_VERTEX 9
    
    typedef int Edge; // 边
    typedef char Vertex; // 顶点
    
    // 定义图的存储结构 -- 邻接矩阵
    typedef struct {
    	int numV, numE;
    	Edge edge[MAX_EDGE][MAX_EDGE];
    	Vertex vertex[MAX_VERTEX];
    }Graph;
    
    int visited[MAX_VERTEX]; // 访问标记数组 - 未访问:非1, 已访问:1
    
    // 创建图 - 基于邻接矩阵 - 初始化Graph中的变量
    void create_graph(Graph *graph)
    {
    	int i, j;
    
    	graph->numE = 15;
    	graph->numV = 9;
    
    	/* 读入顶点信息,建立顶点表 */
    	graph->vertex[0] = 'A';
    	graph->vertex[1] = 'B';
    	graph->vertex[2] = 'C';
    	graph->vertex[3] = 'D';
    	graph->vertex[4] = 'E';
    	graph->vertex[5] = 'F';
    	graph->vertex[6] = 'G';
    	graph->vertex[7] = 'H';
    	graph->vertex[8] = 'I';
    
    
    	for (i = 0; i < graph->numV; i++)/* 初始化图 */
    	{
    		for (j = 0; j < graph->numV; j++)
    		{
    			graph->edge[i][j] = 0;
    		}
    	}
    
    	graph->edge[0][1] = 1;
    	graph->edge[0][5] = 1;
    
    	graph->edge[1][2] = 1;
    	graph->edge[1][8] = 1;
    	graph->edge[1][6] = 1;
    
    	graph->edge[2][3] = 1;
    	graph->edge[2][8] = 1;
    
    	graph->edge[3][4] = 1;
    	graph->edge[3][7] = 1;
    	graph->edge[3][6] = 1;
    	graph->edge[3][8] = 1;
    
    	graph->edge[4][5] = 1;
    	graph->edge[4][7] = 1;
    
    	graph->edge[5][6] = 1;
    
    	graph->edge[6][7] = 1;
    
    
    	for (i = 0; i < graph->numV; i++)
    	{
    		for (j = i; j < graph->numV; j++)
    		{
    			graph->edge[j][i] = graph->edge[i][j];
    		}
    	}
    }
    
    // 访问一个vertex顶点
    void visit(Graph graph, int index) 
    {
    	printf("%c ", graph.vertex[index]);
    }
    
    
    /******************** 深度遍历 ********************/
    
    void dfs(Graph graph, int index)
    {
    	visited[index] = 1;
    	visit(graph, index);
    
    	for (int i = 0; i < graph.numV; i++)
    		if (graph.edge[index][i] == 1 && !visited)
    			dfs(graph, i);
    }
    
    // 邻接矩阵的DFS
    void dfs_traverse(Graph graph)
    {
    	for (int i = 0; i < graph.numV; i++) // 初始化标记数组为未访问
    		visited[i] = 0;
    	for (int i = 0; i < graph.numV; i++) // 对图的各个连通分量调用DFS, 如果是连通图,则只会执行一次
    		if (!visited[i]) // 根据标记数组,判定vertex是否已经被访问
    			dfs(graph, i);
    }
    
    /******************** 广度遍历 ********************/
    
    typedef struct
    {
    	int data[MAX_SIZE];
    	int front;
    	int rear; 
    }Queue; // 循环队列结构
    
    void create_queue(Queue *queue)
    {
    	queue->front = 0;
    	queue->rear = 0;
    }
    
    int isEmpty(Queue queue)
    {
    	if (queue.front == queue.rear) // 队列是否为空
    		return 1;
    	return 0;
    }
    
    int isFull(Queue queue)
    {
    	if ((queue.rear + 1) % MAX_SIZE == queue.front)
    		return 1;
    	return 0;
    }
    
    // 入队操作 - 入队的是序列号,而非元素Vertex
    void enqueue(Queue *queue, int index)
    {
    	if ((queue->rear + 1) % MAX_SIZE == queue->front) // 队列是否满了
    	{
    		printf("The queue is full.");
    		return;
    	}
    	queue->data[queue->rear] = index; // 存储
    	queue->rear = (queue->rear + 1) % MAX_SIZE; // rear指针后移
    }
    
    // 出队 
    void dequeue(Queue* queue, int* index)
    {
    	if (queue->front == queue->rear) // 队列为空
    		return;
    	*index = queue->data[queue->front]; // 将队头元素出队并赋值给index
    	queue->front = (queue->front + 1) % MAX_SIZE; // front指针后移
    }
    
    void print_queue(Graph graph, Queue queue)
    {
    	printf("queue:");
    	int cursor = queue.front;
    	while (!isEmpty(queue) && cursor != queue.rear)
    	{
    		printf(" %c ", graph.vertex[queue.data[cursor]]);
    		cursor = (cursor + 1) % MAX_SIZE;
    	}
    	printf("
    ");
    }
    
    // 访问某个顶点并入队
    void bfs_visit_vertex(Graph graph, int j, Queue* queue)
    {
    	visited[j] = 1;
    	//visit(graph, j);
    
    
    	printf("入队前:%c  ", graph.vertex[j]);
    	print_queue(graph, *queue);
    	enqueue(queue, j);
    	printf("入队后:");
    	print_queue(graph, *queue);
    	printf("
    ");
    }
    
    void bfs_traverse(Graph graph)
    {
    	Queue queue;
    	create_queue(&queue);
    
    	for (int i = 0; i < graph.numV; i++)
    		visited[i] = 0;
    
    	for (int i = 0; i < graph.numV; i++) // 对每个连通分量做循环 
    	{
    		
    		if (!visited[i]) 
    		{
    			printf("
    ====>%d", i);
    			bfs_visit_vertex(graph, i, &queue); //访问连通分量的第一个邻接点,并入队
    			while (!isEmpty(queue))
    			{
    				printf("出队前:");
    				print_queue(graph, queue);
    				dequeue(&queue, &i); // 将队列中的第一个顶点(序列号)出队
    				printf("出队后:");
    				
    				print_queue(graph, queue);
    				printf("
    ");
    				for (int j = 0; j < graph.numV; j++) // 遍历出队的顶点的所有的邻接点,然后将邻接点全部入队
    				{
    					if (graph.edge[i][j] == 1 && !visited[j]) // 未访问过的邻接点
    					{
    						bfs_visit_vertex(graph, j, &queue);
    					}
    				}
    			}
    		}
    	}
    }
    
    
    int main()
    {
    	Graph graph;
    	create_graph(&graph);
    	printf("
    深度遍历:");
    	dfs_traverse(graph);
    	printf("
    广度遍历:");
    	bfs_traverse(graph);
    	return 0;
    }
    

    最终版

    // 基于C语言的图的遍历
    
    #include <stdlib.h>
    #include <stdio.h>
    
    #define MAX_EDGE 15
    #define MAX_SIZE 9
    #define MAX_VERTEX 9
    
    typedef int Edge; // 边
    typedef char Vertex; // 顶点
    
    // 定义图的存储结构 -- 邻接矩阵
    typedef struct {
    	int numV, numE;
    	Edge edge[MAX_EDGE][MAX_EDGE];
    	Vertex vertex[MAX_VERTEX];
    }Graph;
    
    int visited[MAX_VERTEX]; // 访问标记数组 - 未访问:非1, 已访问:1
    
    // 创建图 - 基于邻接矩阵 - 初始化Graph中的变量
    void create_graph(Graph *graph)
    {
    	int i, j;
    
    	graph->numE = 15;
    	graph->numV = 9;
    
    	/* 读入顶点信息,建立顶点表 */
    	graph->vertex[0] = 'A';
    	graph->vertex[1] = 'B';
    	graph->vertex[2] = 'C';
    	graph->vertex[3] = 'D';
    	graph->vertex[4] = 'E';
    	graph->vertex[5] = 'F';
    	graph->vertex[6] = 'G';
    	graph->vertex[7] = 'H';
    	graph->vertex[8] = 'I';
    
    
    	for (i = 0; i < graph->numV; i++)/* 初始化图 */
    	{
    		for (j = 0; j < graph->numV; j++)
    		{
    			graph->edge[i][j] = 0;
    		}
    	}
    
    	graph->edge[0][1] = 1;
    	graph->edge[0][5] = 1;
    
    	graph->edge[1][2] = 1;
    	graph->edge[1][8] = 1;
    	graph->edge[1][6] = 1;
    
    	graph->edge[2][3] = 1;
    	graph->edge[2][8] = 1;
    
    	graph->edge[3][4] = 1;
    	graph->edge[3][7] = 1;
    	graph->edge[3][6] = 1;
    	graph->edge[3][8] = 1;
    
    	graph->edge[4][5] = 1;
    	graph->edge[4][7] = 1;
    
    	graph->edge[5][6] = 1;
    
    	graph->edge[6][7] = 1;
    
    
    	for (i = 0; i < graph->numV; i++)
    	{
    		for (j = i; j < graph->numV; j++)
    		{
    			graph->edge[j][i] = graph->edge[i][j];
    		}
    	}
    }
    
    // 访问一个vertex顶点
    void visit(Graph graph, int index) 
    {
    	printf("%c ", graph.vertex[index]);
    }
    
    
    /******************** 深度遍历 ********************/
    
    void dfs(Graph graph, int index)
    {
    	visited[index] = 1;
    	visit(graph, index);
    
    	for (int i = 0; i < graph.numV; i++)
    		if (graph.edge[index][i] == 1 && !visited)
    			dfs(graph, i);
    }
    
    // 邻接矩阵的DFS
    void dfs_traverse(Graph graph)
    {
    	for (int i = 0; i < graph.numV; i++) // 初始化标记数组为未访问
    		visited[i] = 0;
    	for (int i = 0; i < graph.numV; i++) // 对图的各个连通分量调用DFS, 如果是连通图,则只会执行一次
    		if (!visited[i]) // 根据标记数组,判定vertex是否已经被访问
    			dfs(graph, i);
    }
    
    /******************** 广度遍历 ********************/
    
    typedef struct
    {
    	int data[MAX_SIZE];
    	int front;
    	int rear; 
    }Queue; // 循环队列结构
    
    void create_queue(Queue *queue)
    {
    	queue->front = 0;
    	queue->rear = 0;
    }
    
    int isEmpty(Queue queue)
    {
    	if (queue.front == queue.rear) // 队列是否为空
    		return 1;
    	return 0;
    }
    
    int isFull(Queue queue)
    {
    	if ((queue.rear + 1) % MAX_SIZE == queue.front)
    		return 1;
    	return 0;
    }
    
    // 入队操作 - 入队的是序列号,而非元素Vertex
    void enqueue(Queue *queue, int index)
    {
    	if ((queue->rear + 1) % MAX_SIZE == queue->front) // 队列是否满了
    	{
    		printf("The queue is full.");
    		return;
    	}
    	queue->data[queue->rear] = index; // 存储
    	queue->rear = (queue->rear + 1) % MAX_SIZE; // rear指针后移
    }
    
    // 出队 
    void dequeue(Queue* queue, int* index)
    {
    	if (queue->front == queue->rear) // 队列为空
    		return;
    	*index = queue->data[queue->front]; // 将队头元素出队并赋值给index
    	queue->front = (queue->front + 1) % MAX_SIZE; // front指针后移
    }
    
    void bfs_traverse(Graph graph)
    {
    	Queue queue;
    	create_queue(&queue);
    
    	for (int i = 0; i < graph.numV; i++)
    		visited[i] = 0;
    
    	for (int i = 0; i < graph.numV; i++) // 对每个顶点做循环 
    	{
    		
    		if (!visited[i]) 
    		{
    			/*printf("
    ====>%d", i);*/
    			visited[i] = 1;
    			visit(graph, i);
    			enqueue(&queue, i);
    			while (!isEmpty(queue))
    			{
    				dequeue(&queue, &i);
    				for (int j = 0; j < graph.numV; j++)
    				{
    					if (graph.edge[i][j] == 1 && !visited[j])
    					{
    						visited[j] = 1;			 
    						visit(graph, j);
    						enqueue(&queue, j);				 
    					}
    				}
    			}
    		}
    	}
    }
    
    int main()
    {
    	Graph graph;
    	create_graph(&graph);
    	printf("
    深度遍历:");
    	dfs_traverse(graph);
    	printf("
    广度遍历:");
    	bfs_traverse(graph);
    	return 0;
    }
    
  • 相关阅读:
    js怎么把一个数组里面的值作为一个属性添加到另一数组包含的对象里(小程序)
    h5调用手机相册摄像头以及文件夹
    tomcat7之性能优化
    数组和集合详解及项目中的运用
    Jackson 解析json数据之忽略解析字段注解@JsonIgnoreProperties
    JSON解析及数据库操作实战篇
    jdk及tomcat的安装
    append、replace、replaceAll、indexof、lastIndexOf、substring、split、match的用法
    Spring JdbcTemplate详解及项目中的运用
    JSON解析
  • 原文地址:https://www.cnblogs.com/neen/p/14031651.html
Copyright © 2011-2022 走看看