zoukankan      html  css  js  c++  java
  • Largest Rectangle in Histogram

    Date:

      Nov. 4, 2017

    Problem:

      https://leetcode.com/problems/largest-rectangle-in-histogram/description/

    Description:

      Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

      

    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]

      

    The largest rectangle is shown in the shaded area, which has area = 10 unit.

      For example:

    Given heights = [2,1,5,6,2,3],
    return 10.

     

      很容易想到暴力解法。遍历heights,对一个heights[i],向左寻找第一个l,使得heights[l] < heights[i],向右寻找第一个r,使得heights[r] < heights[i]。maxarea = max(maxarea, heights[i] * (r - l - 1))。这种解法的复杂度为O(N^2)。TLE。

      对解法优化,对每一个i只向右检索,初始化height = heights[i],遇heights[j] < height结算,遇heights[j] = height记录,被记录的heights不需要再检查。结算后令height = heights[j],继续向右扫描。这种解法提供了非常好的优化,但是最坏复杂度仍为O(N^2)。遇到恶意输入[1, 2, 3, 4, ... , N],TLE。

      研究两种稳定而性能优秀的算法。反思暴力解法,我们查找符合条件的r和l时不需要遍历数组,只需要研究之前的查找结果。用left_smaller[i]记录对i而言满足条件的l,初始化left_smaller[0] = -1。研究left_smaller[i]时,我们考虑一个回溯:

                while temp >= 0 and heights[temp] >= heights[i]:
                    temp = left_smaller[temp]

      temp初始化为i - 1,回溯完成后令left_smaller[i] = temp。

      这个回溯起到了非常良好的压缩路径的效果。考虑一颗这样的树,在根节点的父节点处设置哨兵-1,此外每个节点的父节点是它向左查找到的第一个l,使得heights[l] < heights[i]——我们把这一关系叫做A关系。我们正是用parent = left_smaller[son]来描述父子节点间的A关系。当我们向这棵树里放置新节点i时,用temp临时记录其可能的父节点。我们首先令temp = i - 1,很显然,当temp和i满足A关系时,我们可以放心地将i加入temp的子节点。但是,当height[temp] >= height[i],我们应该向上一级父节点查询它是否与新节点具有A关系。因为,对l = left_smaller[temp] + 1 ~ temp,height[l] >= height[temp] >= height[i],任意l都不可能是i的父节点。于是向树的根部回溯,直到temp与i满足A关系,我们将i加入temp的子节点。

      研究right_smaller[i],依葫芦画瓢。

      这一解法的复杂度为O(N)。

      以下是submission:

     1 class Solution:
     2     def largestRectangleArea(self, heights):
     3         length = len(heights)
     4         left_smaller = [-1] * length
     5         right_smaller = [length] * length
     6         result = 0
     7         for i in range(1, length):
     8             temp = i - 1
     9             while temp >= 0 and heights[temp] >= heights[i]:
    10                 temp = left_smaller[temp]
    11             left_smaller[i] = temp
    12         for i in range(length - 2, -1, -1):
    13             temp = i + 1
    14             while temp < length and heights[temp] >= heights[i]:
    15                 temp = right_smaller[temp]
    16             right_smaller[i] = temp
    17         for i in range(length):
    18             result = max(result, heights[i] * (right_smaller[i] - left_smaller[i] - 1))
    19         return result

      另一种解法,维护一个优美的栈,使得其中的元素总是升序。仍然从暴力解法的思路出发,对一个i,我们要计算与它相关的maxarea,只需要向左寻找第一个l,使得heights[l] < heights[i],向右寻找第一个r,使得heights[r] < heights[i]。换言之,我们只关心左侧第一个小于height[i]的l的坐标和右侧第一个小于height[i]的r的坐标。所以,当我们总是维护一个升序栈,当压入新元素r,使得height[r] < height[stack[i]]时,显然对于stack[i],我们总能找到height[r] < height[stack[i]],height[stack[i - 1]] < height[stack[i]]。此时我们结算stack[i]相关的maxarea,将其弹出,重复上述操作,直到栈恢复升序。如此,我们便在O(N)的时间内优雅地遍历了所有i的maxarea。

      以下是submission。

     1 class Solution:
     2     def largestRectangleArea(self, heights):
     3         stack = [-1]
     4         rank = 0
     5         result = 0
     6         heights.append(0)
     7         length = len(heights)
     8         for i in range(length):
     9             while rank > 0 and heights[i] <= heights[stack[rank]]:
    10                 result = max(result, heights[stack[rank]] * (i - stack[rank - 1] - 1))
    11                 stack.pop()
    12                 rank -= 1
    13             rank += 1
    14             stack.append(i)
    15         return result
  • 相关阅读:
    在线客服系统前端多国语言实现方案和代码
    索引下推,这个点你肯定不知道!
    拿捏!隔离级别、幻读、Gap Lock、Next-Key Lock
    现在已经卷到需要问三色标记了吗?
    听说你对explain 很懂?
    面试官:你说说一条更新SQL的执行过程?
    面试官:你说说一条查询SQL的执行过程
    别再纠结线程池大小线程数量了,没有固定公式的
    记一次慢SQL优化
    缓存热点,缓存穿透,终极解决方案看过来
  • 原文地址:https://www.cnblogs.com/neopolitan/p/7783405.html
Copyright © 2011-2022 走看看